Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models
The simulation, assessment, and harvesting of maximum energy of the solar photovoltaic (PV) system require accurate and fast parameter estimation for solar cell/module models. No complete information on the PV module parameters is provided in the manufacturer’s datasheets. This leads to a nonlinear...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2021-08, Vol.20 (4), p.1560-1587 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1587 |
---|---|
container_issue | 4 |
container_start_page | 1560 |
container_title | Journal of computational electronics |
container_volume | 20 |
creator | Shankar, Natarajan Saravanakumar, Natarajan Kumar, Chandrasekaran Kamatchi Kannan, Vijayarangan Indu Rani, Balasubramanian |
description | The simulation, assessment, and harvesting of maximum energy of the solar photovoltaic (PV) system require accurate and fast parameter estimation for solar cell/module models. No complete information on the PV module parameters is provided in the manufacturer’s datasheets. This leads to a nonlinear PV model with a number of unknown parameters. Recently, a new meta-heuristic algorithm called equilibrium optimizer (EO) is suggested to solve global problems. However, the EO is trapped to local optima when it is applied to real-world problems. Therefore, this paper proposes a novel and efficient algorithm called opposition-based equilibrium optimization (OBEO) for extracting the parameters of various PV models, including the single-diode model (SDM), double-diode model (DDM), and three-diode model (TDM). This paper presents opposition-based learning as an update mechanism to produce the best solutions to find better search space. In this paper, the PV module parameters are extracted using three distinct points: open-circuit voltage,
V
oc
, short-circuit current,
I
sc
, and the point at which maximum power in the
I
–
V
curve is provided by the datasheet. The proposed OBEO algorithm minimizes the error of the
I
–
V
relationship, and the OBEO algorithm helps to find the optimal solution by generating zero error, and the search agent updates the position randomly with respect to the best solution to reach the optimal state. The proposed algorithm optimizes the parameters of the module without any assumptions. Finally, the proposed method of extracting the parameter is compared with the state-of-the-art methods to validate its performance. The proposed OBEO can achieve zero error values (fitness values) for all PV models, and the average runtime of the OBEO is 14.78 s, 28.33 s, and 32.62 s for SDM, DDM, and TDM, respectively, of all selected PV modules. |
doi_str_mv | 10.1007/s10825-021-01722-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918274878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918274878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-90bee1add4bdd6f3da23372b30feb2c496a48dd9519966a42557bacf05619b7b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62iSXtIsZfAGA7PRdcitMxnappOkA7r1xW2ngjtX5-fwfefAD8AtwfcEY_YQCa5ogTAlCBNGKWJnYEEKRlFFMnY-5ZKjCtPiElzFuMeYYpqTBfje9L2PLjnfISWjNdAeBtc4FdzQQt8n17ovG6Bstj64tGth7QN0xnbJ1U7LSYS-PllH2YxrqF3Qg0uwl0G2NtkQJ-Aog_NDhP3OJ3_0TZJOw9Yb28RrcFHLJtqb37kEH89P76tXtN68vK0e10hnhCfEsbKWSGNyZUxZZ0bSLGNUZbi2iuqclzKvjOEF4bwcMy0KpqSucVESrpjKluBuvtsHfxhsTGLvh9CNLwXlpKIsr1g1UnSmdPAxBluLPrhWhk9BsJjKFnPZYixbnMoWbJSyWYoj3G1t-Dv9j_UDMvmGwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918274878</pqid></control><display><type>article</type><title>Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Shankar, Natarajan ; Saravanakumar, Natarajan ; Kumar, Chandrasekaran ; Kamatchi Kannan, Vijayarangan ; Indu Rani, Balasubramanian</creator><creatorcontrib>Shankar, Natarajan ; Saravanakumar, Natarajan ; Kumar, Chandrasekaran ; Kamatchi Kannan, Vijayarangan ; Indu Rani, Balasubramanian</creatorcontrib><description>The simulation, assessment, and harvesting of maximum energy of the solar photovoltaic (PV) system require accurate and fast parameter estimation for solar cell/module models. No complete information on the PV module parameters is provided in the manufacturer’s datasheets. This leads to a nonlinear PV model with a number of unknown parameters. Recently, a new meta-heuristic algorithm called equilibrium optimizer (EO) is suggested to solve global problems. However, the EO is trapped to local optima when it is applied to real-world problems. Therefore, this paper proposes a novel and efficient algorithm called opposition-based equilibrium optimization (OBEO) for extracting the parameters of various PV models, including the single-diode model (SDM), double-diode model (DDM), and three-diode model (TDM). This paper presents opposition-based learning as an update mechanism to produce the best solutions to find better search space. In this paper, the PV module parameters are extracted using three distinct points: open-circuit voltage,
V
oc
, short-circuit current,
I
sc
, and the point at which maximum power in the
I
–
V
curve is provided by the datasheet. The proposed OBEO algorithm minimizes the error of the
I
–
V
relationship, and the OBEO algorithm helps to find the optimal solution by generating zero error, and the search agent updates the position randomly with respect to the best solution to reach the optimal state. The proposed algorithm optimizes the parameters of the module without any assumptions. Finally, the proposed method of extracting the parameter is compared with the state-of-the-art methods to validate its performance. The proposed OBEO can achieve zero error values (fitness values) for all PV models, and the average runtime of the OBEO is 14.78 s, 28.33 s, and 32.62 s for SDM, DDM, and TDM, respectively, of all selected PV modules.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-021-01722-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Alternative energy sources ; Diodes ; Efficiency ; Electrical Engineering ; Energy harvesting ; Engineering ; Equilibrium ; Equivalent circuits ; Errors ; Genetic algorithms ; Heuristic ; Heuristic methods ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Maximum power ; Mechanical Engineering ; Open circuit voltage ; Optical and Electronic Materials ; Optimization ; Parameter estimation ; Parameter identification ; Photovoltaic cells ; Renewable resources ; Research methodology ; Short circuit currents ; Solar cells ; Theoretical</subject><ispartof>Journal of computational electronics, 2021-08, Vol.20 (4), p.1560-1587</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-90bee1add4bdd6f3da23372b30feb2c496a48dd9519966a42557bacf05619b7b3</citedby><cites>FETCH-LOGICAL-c319t-90bee1add4bdd6f3da23372b30feb2c496a48dd9519966a42557bacf05619b7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-021-01722-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918274878?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Shankar, Natarajan</creatorcontrib><creatorcontrib>Saravanakumar, Natarajan</creatorcontrib><creatorcontrib>Kumar, Chandrasekaran</creatorcontrib><creatorcontrib>Kamatchi Kannan, Vijayarangan</creatorcontrib><creatorcontrib>Indu Rani, Balasubramanian</creatorcontrib><title>Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>The simulation, assessment, and harvesting of maximum energy of the solar photovoltaic (PV) system require accurate and fast parameter estimation for solar cell/module models. No complete information on the PV module parameters is provided in the manufacturer’s datasheets. This leads to a nonlinear PV model with a number of unknown parameters. Recently, a new meta-heuristic algorithm called equilibrium optimizer (EO) is suggested to solve global problems. However, the EO is trapped to local optima when it is applied to real-world problems. Therefore, this paper proposes a novel and efficient algorithm called opposition-based equilibrium optimization (OBEO) for extracting the parameters of various PV models, including the single-diode model (SDM), double-diode model (DDM), and three-diode model (TDM). This paper presents opposition-based learning as an update mechanism to produce the best solutions to find better search space. In this paper, the PV module parameters are extracted using three distinct points: open-circuit voltage,
V
oc
, short-circuit current,
I
sc
, and the point at which maximum power in the
I
–
V
curve is provided by the datasheet. The proposed OBEO algorithm minimizes the error of the
I
–
V
relationship, and the OBEO algorithm helps to find the optimal solution by generating zero error, and the search agent updates the position randomly with respect to the best solution to reach the optimal state. The proposed algorithm optimizes the parameters of the module without any assumptions. Finally, the proposed method of extracting the parameter is compared with the state-of-the-art methods to validate its performance. The proposed OBEO can achieve zero error values (fitness values) for all PV models, and the average runtime of the OBEO is 14.78 s, 28.33 s, and 32.62 s for SDM, DDM, and TDM, respectively, of all selected PV modules.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Diodes</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Equilibrium</subject><subject>Equivalent circuits</subject><subject>Errors</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Maximum power</subject><subject>Mechanical Engineering</subject><subject>Open circuit voltage</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Photovoltaic cells</subject><subject>Renewable resources</subject><subject>Research methodology</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62iSXtIsZfAGA7PRdcitMxnappOkA7r1xW2ngjtX5-fwfefAD8AtwfcEY_YQCa5ogTAlCBNGKWJnYEEKRlFFMnY-5ZKjCtPiElzFuMeYYpqTBfje9L2PLjnfISWjNdAeBtc4FdzQQt8n17ovG6Bstj64tGth7QN0xnbJ1U7LSYS-PllH2YxrqF3Qg0uwl0G2NtkQJ-Aog_NDhP3OJ3_0TZJOw9Yb28RrcFHLJtqb37kEH89P76tXtN68vK0e10hnhCfEsbKWSGNyZUxZZ0bSLGNUZbi2iuqclzKvjOEF4bwcMy0KpqSucVESrpjKluBuvtsHfxhsTGLvh9CNLwXlpKIsr1g1UnSmdPAxBluLPrhWhk9BsJjKFnPZYixbnMoWbJSyWYoj3G1t-Dv9j_UDMvmGwA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Shankar, Natarajan</creator><creator>Saravanakumar, Natarajan</creator><creator>Kumar, Chandrasekaran</creator><creator>Kamatchi Kannan, Vijayarangan</creator><creator>Indu Rani, Balasubramanian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210801</creationdate><title>Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models</title><author>Shankar, Natarajan ; Saravanakumar, Natarajan ; Kumar, Chandrasekaran ; Kamatchi Kannan, Vijayarangan ; Indu Rani, Balasubramanian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-90bee1add4bdd6f3da23372b30feb2c496a48dd9519966a42557bacf05619b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Diodes</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Equilibrium</topic><topic>Equivalent circuits</topic><topic>Errors</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Maximum power</topic><topic>Mechanical Engineering</topic><topic>Open circuit voltage</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Photovoltaic cells</topic><topic>Renewable resources</topic><topic>Research methodology</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, Natarajan</creatorcontrib><creatorcontrib>Saravanakumar, Natarajan</creatorcontrib><creatorcontrib>Kumar, Chandrasekaran</creatorcontrib><creatorcontrib>Kamatchi Kannan, Vijayarangan</creatorcontrib><creatorcontrib>Indu Rani, Balasubramanian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, Natarajan</au><au>Saravanakumar, Natarajan</au><au>Kumar, Chandrasekaran</au><au>Kamatchi Kannan, Vijayarangan</au><au>Indu Rani, Balasubramanian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>1560</spage><epage>1587</epage><pages>1560-1587</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>The simulation, assessment, and harvesting of maximum energy of the solar photovoltaic (PV) system require accurate and fast parameter estimation for solar cell/module models. No complete information on the PV module parameters is provided in the manufacturer’s datasheets. This leads to a nonlinear PV model with a number of unknown parameters. Recently, a new meta-heuristic algorithm called equilibrium optimizer (EO) is suggested to solve global problems. However, the EO is trapped to local optima when it is applied to real-world problems. Therefore, this paper proposes a novel and efficient algorithm called opposition-based equilibrium optimization (OBEO) for extracting the parameters of various PV models, including the single-diode model (SDM), double-diode model (DDM), and three-diode model (TDM). This paper presents opposition-based learning as an update mechanism to produce the best solutions to find better search space. In this paper, the PV module parameters are extracted using three distinct points: open-circuit voltage,
V
oc
, short-circuit current,
I
sc
, and the point at which maximum power in the
I
–
V
curve is provided by the datasheet. The proposed OBEO algorithm minimizes the error of the
I
–
V
relationship, and the OBEO algorithm helps to find the optimal solution by generating zero error, and the search agent updates the position randomly with respect to the best solution to reach the optimal state. The proposed algorithm optimizes the parameters of the module without any assumptions. Finally, the proposed method of extracting the parameter is compared with the state-of-the-art methods to validate its performance. The proposed OBEO can achieve zero error values (fitness values) for all PV models, and the average runtime of the OBEO is 14.78 s, 28.33 s, and 32.62 s for SDM, DDM, and TDM, respectively, of all selected PV modules.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-021-01722-7</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2021-08, Vol.20 (4), p.1560-1587 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918274878 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Algorithms Alternative energy sources Diodes Efficiency Electrical Engineering Energy harvesting Engineering Equilibrium Equivalent circuits Errors Genetic algorithms Heuristic Heuristic methods Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Maximum power Mechanical Engineering Open circuit voltage Optical and Electronic Materials Optimization Parameter estimation Parameter identification Photovoltaic cells Renewable resources Research methodology Short circuit currents Solar cells Theoretical |
title | Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opposition-based%20equilibrium%20optimizer%20algorithm%20for%20identification%20of%20equivalent%20circuit%20parameters%20of%20various%20photovoltaic%20models&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Shankar,%20Natarajan&rft.date=2021-08-01&rft.volume=20&rft.issue=4&rft.spage=1560&rft.epage=1587&rft.pages=1560-1587&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-021-01722-7&rft_dat=%3Cproquest_cross%3E2918274878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918274878&rft_id=info:pmid/&rfr_iscdi=true |