Adsorption effect of SO2 and CO2 gas molecules on ZnSe nanotube devices: first principles analysis
ZnSe nanotubes were constructed and optimized in order to analyze the adsorption behaviour of environmentally hazardous gases such as SO 2 and CO 2 by using density functional analysis. Different sites on the nanotubes, such as Zn and Se, were studied for adsorption energy, Mullikan population and t...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2018-03, Vol.17 (1), p.304-312 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 1 |
container_start_page | 304 |
container_title | Journal of computational electronics |
container_volume | 17 |
creator | Vasumathi, R. Lalithambika, K. C. Balamurugan, D. Thayumanavan, A. Neelamegam, P. Sriram, S. |
description | ZnSe nanotubes were constructed and optimized in order to analyze the adsorption behaviour of environmentally hazardous gases such as
SO
2
and
CO
2
by using density functional analysis. Different sites on the nanotubes, such as Zn and Se, were studied for adsorption energy, Mullikan population and the recovery time of the ZnSe nanotube during the adsorption process. The obtained results show that compared to
SO
2
molecules, the ZnSe nanotubes are more reactive to
CO
2
molecules. To study the electronic transport properties of the ZnSe nanotubes with and without gas molecules, a two-probe system was constructed and the transport properties were studied by implementing a non-equilibrium Green’s function. The transport properties were analyzed in terms of the device density of states, transmission curves and the V–I characteristics. The results confirm that the ZnSe nanotubes are more favourable for
CO
2
molecules compared to the
SO
2
molecules. |
doi_str_mv | 10.1007/s10825-017-1091-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2918273148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918273148</sourcerecordid><originalsourceid>FETCH-LOGICAL-p717-1ea9fa7df8fefeca79cf4b7863c016002a03fa918ba7e82a14e8884ae93b819a3</originalsourceid><addsrcrecordid>eNpFkMFKw0AQQBdRsFY_wNuC59WdTdrdeCtFq1DooT15CZNktqTEbMwkgn_vhgqeZg5vhscT4h70I2htnxi0MwulwSrQGSh7IWawsEY5SOzltC8z5bRZXIsb5pPWRpsUZqJYVRz6bqhDK8l7KgcZvNzvjMS2kus4j8jyMzRUjg2xjNhHuyfZYhuGsSBZ0XddEj9LX_c8yK6v27LuJhRbbH645ltx5bFhuvubc3F4fTms39R2t3lfr7aqs5M1YebRVt55ihpos9KnhXXLpNSwjL6oE48ZuAItOYOQknMuRcqSwkGGyVw8nN92ffgaiYf8FMY-OnBu4pmxCaQuUuZM8WR6pP6fAp1PKfNzyjymzKeUuU1-Aa-mZxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918273148</pqid></control><display><type>article</type><title>Adsorption effect of SO2 and CO2 gas molecules on ZnSe nanotube devices: first principles analysis</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Vasumathi, R. ; Lalithambika, K. C. ; Balamurugan, D. ; Thayumanavan, A. ; Neelamegam, P. ; Sriram, S.</creator><creatorcontrib>Vasumathi, R. ; Lalithambika, K. C. ; Balamurugan, D. ; Thayumanavan, A. ; Neelamegam, P. ; Sriram, S.</creatorcontrib><description>ZnSe nanotubes were constructed and optimized in order to analyze the adsorption behaviour of environmentally hazardous gases such as
SO
2
and
CO
2
by using density functional analysis. Different sites on the nanotubes, such as Zn and Se, were studied for adsorption energy, Mullikan population and the recovery time of the ZnSe nanotube during the adsorption process. The obtained results show that compared to
SO
2
molecules, the ZnSe nanotubes are more reactive to
CO
2
molecules. To study the electronic transport properties of the ZnSe nanotubes with and without gas molecules, a two-probe system was constructed and the transport properties were studied by implementing a non-equilibrium Green’s function. The transport properties were analyzed in terms of the device density of states, transmission curves and the V–I characteristics. The results confirm that the ZnSe nanotubes are more favourable for
CO
2
molecules compared to the
SO
2
molecules.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-017-1091-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorbents ; Adsorption ; Carbon dioxide ; Electrical Engineering ; Electron transport ; Energy ; Engineering ; First principles ; Functional analysis ; Gases ; Green's functions ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Nanotubes ; Optical and Electronic Materials ; Recovery time ; Sulfur dioxide ; Theoretical ; Transport properties ; Zinc selenide</subject><ispartof>Journal of computational electronics, 2018-03, Vol.17 (1), p.304-312</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-017-1091-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918273148?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Vasumathi, R.</creatorcontrib><creatorcontrib>Lalithambika, K. C.</creatorcontrib><creatorcontrib>Balamurugan, D.</creatorcontrib><creatorcontrib>Thayumanavan, A.</creatorcontrib><creatorcontrib>Neelamegam, P.</creatorcontrib><creatorcontrib>Sriram, S.</creatorcontrib><title>Adsorption effect of SO2 and CO2 gas molecules on ZnSe nanotube devices: first principles analysis</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>ZnSe nanotubes were constructed and optimized in order to analyze the adsorption behaviour of environmentally hazardous gases such as
SO
2
and
CO
2
by using density functional analysis. Different sites on the nanotubes, such as Zn and Se, were studied for adsorption energy, Mullikan population and the recovery time of the ZnSe nanotube during the adsorption process. The obtained results show that compared to
SO
2
molecules, the ZnSe nanotubes are more reactive to
CO
2
molecules. To study the electronic transport properties of the ZnSe nanotubes with and without gas molecules, a two-probe system was constructed and the transport properties were studied by implementing a non-equilibrium Green’s function. The transport properties were analyzed in terms of the device density of states, transmission curves and the V–I characteristics. The results confirm that the ZnSe nanotubes are more favourable for
CO
2
molecules compared to the
SO
2
molecules.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Electrical Engineering</subject><subject>Electron transport</subject><subject>Energy</subject><subject>Engineering</subject><subject>First principles</subject><subject>Functional analysis</subject><subject>Gases</subject><subject>Green's functions</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Nanotubes</subject><subject>Optical and Electronic Materials</subject><subject>Recovery time</subject><subject>Sulfur dioxide</subject><subject>Theoretical</subject><subject>Transport properties</subject><subject>Zinc selenide</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkMFKw0AQQBdRsFY_wNuC59WdTdrdeCtFq1DooT15CZNktqTEbMwkgn_vhgqeZg5vhscT4h70I2htnxi0MwulwSrQGSh7IWawsEY5SOzltC8z5bRZXIsb5pPWRpsUZqJYVRz6bqhDK8l7KgcZvNzvjMS2kus4j8jyMzRUjg2xjNhHuyfZYhuGsSBZ0XddEj9LX_c8yK6v27LuJhRbbH645ltx5bFhuvubc3F4fTms39R2t3lfr7aqs5M1YebRVt55ihpos9KnhXXLpNSwjL6oE48ZuAItOYOQknMuRcqSwkGGyVw8nN92ffgaiYf8FMY-OnBu4pmxCaQuUuZM8WR6pP6fAp1PKfNzyjymzKeUuU1-Aa-mZxo</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Vasumathi, R.</creator><creator>Lalithambika, K. C.</creator><creator>Balamurugan, D.</creator><creator>Thayumanavan, A.</creator><creator>Neelamegam, P.</creator><creator>Sriram, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>Adsorption effect of SO2 and CO2 gas molecules on ZnSe nanotube devices: first principles analysis</title><author>Vasumathi, R. ; Lalithambika, K. C. ; Balamurugan, D. ; Thayumanavan, A. ; Neelamegam, P. ; Sriram, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p717-1ea9fa7df8fefeca79cf4b7863c016002a03fa918ba7e82a14e8884ae93b819a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Electrical Engineering</topic><topic>Electron transport</topic><topic>Energy</topic><topic>Engineering</topic><topic>First principles</topic><topic>Functional analysis</topic><topic>Gases</topic><topic>Green's functions</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Nanotubes</topic><topic>Optical and Electronic Materials</topic><topic>Recovery time</topic><topic>Sulfur dioxide</topic><topic>Theoretical</topic><topic>Transport properties</topic><topic>Zinc selenide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasumathi, R.</creatorcontrib><creatorcontrib>Lalithambika, K. C.</creatorcontrib><creatorcontrib>Balamurugan, D.</creatorcontrib><creatorcontrib>Thayumanavan, A.</creatorcontrib><creatorcontrib>Neelamegam, P.</creatorcontrib><creatorcontrib>Sriram, S.</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasumathi, R.</au><au>Lalithambika, K. C.</au><au>Balamurugan, D.</au><au>Thayumanavan, A.</au><au>Neelamegam, P.</au><au>Sriram, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption effect of SO2 and CO2 gas molecules on ZnSe nanotube devices: first principles analysis</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>304</spage><epage>312</epage><pages>304-312</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>ZnSe nanotubes were constructed and optimized in order to analyze the adsorption behaviour of environmentally hazardous gases such as
SO
2
and
CO
2
by using density functional analysis. Different sites on the nanotubes, such as Zn and Se, were studied for adsorption energy, Mullikan population and the recovery time of the ZnSe nanotube during the adsorption process. The obtained results show that compared to
SO
2
molecules, the ZnSe nanotubes are more reactive to
CO
2
molecules. To study the electronic transport properties of the ZnSe nanotubes with and without gas molecules, a two-probe system was constructed and the transport properties were studied by implementing a non-equilibrium Green’s function. The transport properties were analyzed in terms of the device density of states, transmission curves and the V–I characteristics. The results confirm that the ZnSe nanotubes are more favourable for
CO
2
molecules compared to the
SO
2
molecules.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-017-1091-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2018-03, Vol.17 (1), p.304-312 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918273148 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Adsorbents Adsorption Carbon dioxide Electrical Engineering Electron transport Energy Engineering First principles Functional analysis Gases Green's functions Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Nanotubes Optical and Electronic Materials Recovery time Sulfur dioxide Theoretical Transport properties Zinc selenide |
title | Adsorption effect of SO2 and CO2 gas molecules on ZnSe nanotube devices: first principles analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20effect%20of%20SO2%20and%20CO2%20gas%20molecules%20on%20ZnSe%20nanotube%20devices:%20first%20principles%20analysis&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Vasumathi,%20R.&rft.date=2018-03-01&rft.volume=17&rft.issue=1&rft.spage=304&rft.epage=312&rft.pages=304-312&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-017-1091-7&rft_dat=%3Cproquest_sprin%3E2918273148%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918273148&rft_id=info:pmid/&rfr_iscdi=true |