Radiation effects on memristor-based non-volatile SRAM cells
Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2018-03, Vol.17 (1), p.279-287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 1 |
container_start_page | 279 |
container_title | Journal of computational electronics |
container_volume | 17 |
creator | Vijay, H. M. Ramakrishnan, V. N. |
description | Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is
100
μ
A
, whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA. |
doi_str_mv | 10.1007/s10825-017-1080-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918272600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918272600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF19H3XtskBTfD4BeMCKOuQ9qm0qFtxqQj4783QwVXrt5dnHsfHMYuEa4RQN4EBEU5B5Q8JuD7IzbDXBJXmMrjQxYFV0D5KTsLYQNAQBnO2O3a1K0ZWzcktmlsNYYkxt72vg2j87w0wdbJ4Ab-5brIdTZ5XS-ek8p2XThnJ43pgr34vXP2fn_3tnzkq5eHp-VixasUxciRSitEkRKpOldQFnlDMqsECIGqQawkZVRTkRlrTV5ABrVQKMsyrVGUGaVzdjXtbr373Nkw6o3b-SG-1FSgIkkCIFI4UZV3IXjb6K1ve-O_NYI-SNKTJB0l6YMkvY8dmjohssOH9X_L_5d-AOReaA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918272600</pqid></control><display><type>article</type><title>Radiation effects on memristor-based non-volatile SRAM cells</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Vijay, H. M. ; Ramakrishnan, V. N.</creator><creatorcontrib>Vijay, H. M. ; Ramakrishnan, V. N.</creatorcontrib><description>Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is
100
μ
A
, whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-017-1080-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Electrical Engineering ; Engineering ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Memristors ; Monte Carlo simulation ; Optical and Electronic Materials ; Radiation ; Radiation dosage ; Radiation effects ; Static random access memory ; Theoretical ; Threshold currents ; Titanium ; Topology ; Transistors ; Transmission gates</subject><ispartof>Journal of computational electronics, 2018-03, Vol.17 (1), p.279-287</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</citedby><cites>FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</cites><orcidid>0000-0003-1380-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-017-1080-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918272600?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Vijay, H. M.</creatorcontrib><creatorcontrib>Ramakrishnan, V. N.</creatorcontrib><title>Radiation effects on memristor-based non-volatile SRAM cells</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is
100
μ
A
, whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Memristors</subject><subject>Monte Carlo simulation</subject><subject>Optical and Electronic Materials</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Radiation effects</subject><subject>Static random access memory</subject><subject>Theoretical</subject><subject>Threshold currents</subject><subject>Titanium</subject><subject>Topology</subject><subject>Transistors</subject><subject>Transmission gates</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcF19H3XtskBTfD4BeMCKOuQ9qm0qFtxqQj4783QwVXrt5dnHsfHMYuEa4RQN4EBEU5B5Q8JuD7IzbDXBJXmMrjQxYFV0D5KTsLYQNAQBnO2O3a1K0ZWzcktmlsNYYkxt72vg2j87w0wdbJ4Ab-5brIdTZ5XS-ek8p2XThnJ43pgr34vXP2fn_3tnzkq5eHp-VixasUxciRSitEkRKpOldQFnlDMqsECIGqQawkZVRTkRlrTV5ABrVQKMsyrVGUGaVzdjXtbr373Nkw6o3b-SG-1FSgIkkCIFI4UZV3IXjb6K1ve-O_NYI-SNKTJB0l6YMkvY8dmjohssOH9X_L_5d-AOReaA8</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Vijay, H. M.</creator><creator>Ramakrishnan, V. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1380-2486</orcidid></search><sort><creationdate>20180301</creationdate><title>Radiation effects on memristor-based non-volatile SRAM cells</title><author>Vijay, H. M. ; Ramakrishnan, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Memristors</topic><topic>Monte Carlo simulation</topic><topic>Optical and Electronic Materials</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Radiation effects</topic><topic>Static random access memory</topic><topic>Theoretical</topic><topic>Threshold currents</topic><topic>Titanium</topic><topic>Topology</topic><topic>Transistors</topic><topic>Transmission gates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijay, H. M.</creatorcontrib><creatorcontrib>Ramakrishnan, V. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijay, H. M.</au><au>Ramakrishnan, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation effects on memristor-based non-volatile SRAM cells</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>279</spage><epage>287</epage><pages>279-287</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is
100
μ
A
, whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-017-1080-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1380-2486</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2018-03, Vol.17 (1), p.279-287 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918272600 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Electrical Engineering Engineering Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Memristors Monte Carlo simulation Optical and Electronic Materials Radiation Radiation dosage Radiation effects Static random access memory Theoretical Threshold currents Titanium Topology Transistors Transmission gates |
title | Radiation effects on memristor-based non-volatile SRAM cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20effects%20on%20memristor-based%20non-volatile%20SRAM%20cells&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Vijay,%20H.%20M.&rft.date=2018-03-01&rft.volume=17&rft.issue=1&rft.spage=279&rft.epage=287&rft.pages=279-287&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-017-1080-x&rft_dat=%3Cproquest_cross%3E2918272600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918272600&rft_id=info:pmid/&rfr_iscdi=true |