Radiation effects on memristor-based non-volatile SRAM cells

Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2018-03, Vol.17 (1), p.279-287
Hauptverfasser: Vijay, H. M., Ramakrishnan, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 1
container_start_page 279
container_title Journal of computational electronics
container_volume 17
creator Vijay, H. M.
Ramakrishnan, V. N.
description Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is 100 μ A , whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA.
doi_str_mv 10.1007/s10825-017-1080-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918272600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918272600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF19H3XtskBTfD4BeMCKOuQ9qm0qFtxqQj4783QwVXrt5dnHsfHMYuEa4RQN4EBEU5B5Q8JuD7IzbDXBJXmMrjQxYFV0D5KTsLYQNAQBnO2O3a1K0ZWzcktmlsNYYkxt72vg2j87w0wdbJ4Ab-5brIdTZ5XS-ek8p2XThnJ43pgr34vXP2fn_3tnzkq5eHp-VixasUxciRSitEkRKpOldQFnlDMqsECIGqQawkZVRTkRlrTV5ABrVQKMsyrVGUGaVzdjXtbr373Nkw6o3b-SG-1FSgIkkCIFI4UZV3IXjb6K1ve-O_NYI-SNKTJB0l6YMkvY8dmjohssOH9X_L_5d-AOReaA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918272600</pqid></control><display><type>article</type><title>Radiation effects on memristor-based non-volatile SRAM cells</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Vijay, H. M. ; Ramakrishnan, V. N.</creator><creatorcontrib>Vijay, H. M. ; Ramakrishnan, V. N.</creatorcontrib><description>Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is 100 μ A , whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-017-1080-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Electrical Engineering ; Engineering ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Memristors ; Monte Carlo simulation ; Optical and Electronic Materials ; Radiation ; Radiation dosage ; Radiation effects ; Static random access memory ; Theoretical ; Threshold currents ; Titanium ; Topology ; Transistors ; Transmission gates</subject><ispartof>Journal of computational electronics, 2018-03, Vol.17 (1), p.279-287</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</citedby><cites>FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</cites><orcidid>0000-0003-1380-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-017-1080-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918272600?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Vijay, H. M.</creatorcontrib><creatorcontrib>Ramakrishnan, V. N.</creatorcontrib><title>Radiation effects on memristor-based non-volatile SRAM cells</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is 100 μ A , whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Memristors</subject><subject>Monte Carlo simulation</subject><subject>Optical and Electronic Materials</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Radiation effects</subject><subject>Static random access memory</subject><subject>Theoretical</subject><subject>Threshold currents</subject><subject>Titanium</subject><subject>Topology</subject><subject>Transistors</subject><subject>Transmission gates</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcF19H3XtskBTfD4BeMCKOuQ9qm0qFtxqQj4783QwVXrt5dnHsfHMYuEa4RQN4EBEU5B5Q8JuD7IzbDXBJXmMrjQxYFV0D5KTsLYQNAQBnO2O3a1K0ZWzcktmlsNYYkxt72vg2j87w0wdbJ4Ab-5brIdTZ5XS-ek8p2XThnJ43pgr34vXP2fn_3tnzkq5eHp-VixasUxciRSitEkRKpOldQFnlDMqsECIGqQawkZVRTkRlrTV5ABrVQKMsyrVGUGaVzdjXtbr373Nkw6o3b-SG-1FSgIkkCIFI4UZV3IXjb6K1ve-O_NYI-SNKTJB0l6YMkvY8dmjohssOH9X_L_5d-AOReaA8</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Vijay, H. M.</creator><creator>Ramakrishnan, V. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1380-2486</orcidid></search><sort><creationdate>20180301</creationdate><title>Radiation effects on memristor-based non-volatile SRAM cells</title><author>Vijay, H. M. ; Ramakrishnan, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-12be6693228d580b95f274c606618f11c7242d294aeea59040d6817bb3d16b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Memristors</topic><topic>Monte Carlo simulation</topic><topic>Optical and Electronic Materials</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Radiation effects</topic><topic>Static random access memory</topic><topic>Theoretical</topic><topic>Threshold currents</topic><topic>Titanium</topic><topic>Topology</topic><topic>Transistors</topic><topic>Transmission gates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijay, H. M.</creatorcontrib><creatorcontrib>Ramakrishnan, V. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijay, H. M.</au><au>Ramakrishnan, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation effects on memristor-based non-volatile SRAM cells</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>279</spage><epage>287</epage><pages>279-287</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>Memristors are a promising candidate for non-volatile memory elements. In this paper, we performed a radiation study on different memristor-based topological Non-Volatile Static Random Access Memory (NVSRAM). A Voltage ThrEshold Adaptive Memristor (VTEAM) model is considered for simulation analysis related to this work. In this paper, four different topologies, namely 3-Transistor 2-Memristor (3T2M) SRAM cell, 2-Transmission Gate 1-Memristor (2TG1M) SRAM cell, 1-Transistor 1-Memristor (1T1M) SRAM cell, and 4-Transistor 2-Memristor (4T2M) SRAM cell are investigated. A double-exponential current pulse is induced during a read operation and perturbation is observed due to irradiation. The memory cell retains its original state after radiation dose is removed. 4T2M SRAM topology is more reliable because its highest threshold current value is 100 μ A , whereas 1T1M SRAM topology is less reliable with the lowest threshold current value of 5 nA.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-017-1080-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1380-2486</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2018-03, Vol.17 (1), p.279-287
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918272600
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Electrical Engineering
Engineering
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Memristors
Monte Carlo simulation
Optical and Electronic Materials
Radiation
Radiation dosage
Radiation effects
Static random access memory
Theoretical
Threshold currents
Titanium
Topology
Transistors
Transmission gates
title Radiation effects on memristor-based non-volatile SRAM cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20effects%20on%20memristor-based%20non-volatile%20SRAM%20cells&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Vijay,%20H.%20M.&rft.date=2018-03-01&rft.volume=17&rft.issue=1&rft.spage=279&rft.epage=287&rft.pages=279-287&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-017-1080-x&rft_dat=%3Cproquest_cross%3E2918272600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918272600&rft_id=info:pmid/&rfr_iscdi=true