RETRACTED ARTICLE: Multimedia and multi-feature cluster fusion model based on saliency for mobile network applications
This paper introduces the concept, advantages, structure, method and application of multisensor integration and data fusion, and lists four different integration characteristics of sensors. Data fusion technology combines data from different sensors or other information sources in order to improve t...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2019-07, Vol.22 (Suppl 4), p.9661-9676 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9676 |
---|---|
container_issue | Suppl 4 |
container_start_page | 9661 |
container_title | Cluster computing |
container_volume | 22 |
creator | Jia, Zhenze Fan, Xiaoguang Wang, Haoxiang |
description | This paper introduces the concept, advantages, structure, method and application of multisensor integration and data fusion, and lists four different integration characteristics of sensors. Data fusion technology combines data from different sensors or other information sources in order to improve the accuracy of location and feature estimation. In the process of data fusion, modeling includes signal model, noise model, converter model, data transformation model and fusion model. The data fusion model includes the fusion method and the structure. This paper introduces the integrated, distributed and hybrid fusion structures, and compares them. The visual saliency map to image processing technology depends on the quality of the obtained good results, the existing visual saliency detection method is usually only detected by visual saliency map attribute rough, seriously affected the image processing results. Therefore, a visual saliency detection method based on Bayesian theory and statistical learning is proposed to detect the visual saliency of the image. The method is based on Bayesian theory of the significance of static images. According to the bottom-up visual saliency model, the ROC curve was used for quantitative evaluation in the two standard data sets. The results show that the nonlinear combination effect is better than the linear combination. |
doi_str_mv | 10.1007/s10586-017-1335-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918271831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918271831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1610-e7671dfe3e857751cffab3b5d69c60313e1d6fe877d21569682af42dce86f71b3</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-V3ObJWl9G7XqYCKM-RzS5kY6u3YmrbJ_b8YEn3y693A-7uUQcg3sFhhTdwGYyGTCQCXAuUjYCZmAUDxRYsZP484jqzKhzslFCBvGWK7SfEK-VuV6NS_W5QOdr9aLYlne05exHZot2sZQ01m6PcDEoRlGj7RuxzCgp24MTd_RbW-xpZUJaGmEwbQNdvWeut5HrmpapB0O373_oGa3a5vaDNEWLsmZM23Aq985JW-P5bp4TpavT4tivkxqkMASVFKBdcgxfq4E1M6ZilfCyryWjANHsNJhppRNQchcZqlxs9TWmEmnoOJTcnPM3fn-c8Qw6E0_-i6e1GkOWaogiylTAkdV7fsQPDq9883W-L0Gpg_16mO9OtarD_VqFj3p0ROitntH_5f8v-kHHf99Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918271831</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Multimedia and multi-feature cluster fusion model based on saliency for mobile network applications</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Jia, Zhenze ; Fan, Xiaoguang ; Wang, Haoxiang</creator><creatorcontrib>Jia, Zhenze ; Fan, Xiaoguang ; Wang, Haoxiang</creatorcontrib><description>This paper introduces the concept, advantages, structure, method and application of multisensor integration and data fusion, and lists four different integration characteristics of sensors. Data fusion technology combines data from different sensors or other information sources in order to improve the accuracy of location and feature estimation. In the process of data fusion, modeling includes signal model, noise model, converter model, data transformation model and fusion model. The data fusion model includes the fusion method and the structure. This paper introduces the integrated, distributed and hybrid fusion structures, and compares them. The visual saliency map to image processing technology depends on the quality of the obtained good results, the existing visual saliency detection method is usually only detected by visual saliency map attribute rough, seriously affected the image processing results. Therefore, a visual saliency detection method based on Bayesian theory and statistical learning is proposed to detect the visual saliency of the image. The method is based on Bayesian theory of the significance of static images. According to the bottom-up visual saliency model, the ROC curve was used for quantitative evaluation in the two standard data sets. The results show that the nonlinear combination effect is better than the linear combination.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-017-1335-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Operating Systems ; Processor Architectures</subject><ispartof>Cluster computing, 2019-07, Vol.22 (Suppl 4), p.9661-9676</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1610-e7671dfe3e857751cffab3b5d69c60313e1d6fe877d21569682af42dce86f71b3</citedby><cites>FETCH-LOGICAL-c1610-e7671dfe3e857751cffab3b5d69c60313e1d6fe877d21569682af42dce86f71b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-017-1335-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918271831?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Jia, Zhenze</creatorcontrib><creatorcontrib>Fan, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Haoxiang</creatorcontrib><title>RETRACTED ARTICLE: Multimedia and multi-feature cluster fusion model based on saliency for mobile network applications</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>This paper introduces the concept, advantages, structure, method and application of multisensor integration and data fusion, and lists four different integration characteristics of sensors. Data fusion technology combines data from different sensors or other information sources in order to improve the accuracy of location and feature estimation. In the process of data fusion, modeling includes signal model, noise model, converter model, data transformation model and fusion model. The data fusion model includes the fusion method and the structure. This paper introduces the integrated, distributed and hybrid fusion structures, and compares them. The visual saliency map to image processing technology depends on the quality of the obtained good results, the existing visual saliency detection method is usually only detected by visual saliency map attribute rough, seriously affected the image processing results. Therefore, a visual saliency detection method based on Bayesian theory and statistical learning is proposed to detect the visual saliency of the image. The method is based on Bayesian theory of the significance of static images. According to the bottom-up visual saliency model, the ROC curve was used for quantitative evaluation in the two standard data sets. The results show that the nonlinear combination effect is better than the linear combination.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UF1LwzAUDaLgnP4A3wI-V3ObJWl9G7XqYCKM-RzS5kY6u3YmrbJ_b8YEn3y693A-7uUQcg3sFhhTdwGYyGTCQCXAuUjYCZmAUDxRYsZP484jqzKhzslFCBvGWK7SfEK-VuV6NS_W5QOdr9aLYlne05exHZot2sZQ01m6PcDEoRlGj7RuxzCgp24MTd_RbW-xpZUJaGmEwbQNdvWeut5HrmpapB0O373_oGa3a5vaDNEWLsmZM23Aq985JW-P5bp4TpavT4tivkxqkMASVFKBdcgxfq4E1M6ZilfCyryWjANHsNJhppRNQchcZqlxs9TWmEmnoOJTcnPM3fn-c8Qw6E0_-i6e1GkOWaogiylTAkdV7fsQPDq9883W-L0Gpg_16mO9OtarD_VqFj3p0ROitntH_5f8v-kHHf99Ww</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Jia, Zhenze</creator><creator>Fan, Xiaoguang</creator><creator>Wang, Haoxiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190701</creationdate><title>RETRACTED ARTICLE: Multimedia and multi-feature cluster fusion model based on saliency for mobile network applications</title><author>Jia, Zhenze ; Fan, Xiaoguang ; Wang, Haoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1610-e7671dfe3e857751cffab3b5d69c60313e1d6fe877d21569682af42dce86f71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Zhenze</creatorcontrib><creatorcontrib>Fan, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Haoxiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Zhenze</au><au>Fan, Xiaoguang</au><au>Wang, Haoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Multimedia and multi-feature cluster fusion model based on saliency for mobile network applications</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 4</issue><spage>9661</spage><epage>9676</epage><pages>9661-9676</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>This paper introduces the concept, advantages, structure, method and application of multisensor integration and data fusion, and lists four different integration characteristics of sensors. Data fusion technology combines data from different sensors or other information sources in order to improve the accuracy of location and feature estimation. In the process of data fusion, modeling includes signal model, noise model, converter model, data transformation model and fusion model. The data fusion model includes the fusion method and the structure. This paper introduces the integrated, distributed and hybrid fusion structures, and compares them. The visual saliency map to image processing technology depends on the quality of the obtained good results, the existing visual saliency detection method is usually only detected by visual saliency map attribute rough, seriously affected the image processing results. Therefore, a visual saliency detection method based on Bayesian theory and statistical learning is proposed to detect the visual saliency of the image. The method is based on Bayesian theory of the significance of static images. According to the bottom-up visual saliency model, the ROC curve was used for quantitative evaluation in the two standard data sets. The results show that the nonlinear combination effect is better than the linear combination.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-017-1335-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2019-07, Vol.22 (Suppl 4), p.9661-9676 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918271831 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Computer Communication Networks Computer Science Operating Systems Processor Architectures |
title | RETRACTED ARTICLE: Multimedia and multi-feature cluster fusion model based on saliency for mobile network applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Multimedia%20and%20multi-feature%20cluster%20fusion%20model%20based%20on%20saliency%20for%20mobile%20network%20applications&rft.jtitle=Cluster%20computing&rft.au=Jia,%20Zhenze&rft.date=2019-07-01&rft.volume=22&rft.issue=Suppl%204&rft.spage=9661&rft.epage=9676&rft.pages=9661-9676&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-017-1335-0&rft_dat=%3Cproquest_cross%3E2918271831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918271831&rft_id=info:pmid/&rfr_iscdi=true |