A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs
In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a s p 3 d 5 s ∗...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2015-06, Vol.14 (2), p.593-603 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 2 |
container_start_page | 593 |
container_title | Journal of computational electronics |
container_volume | 14 |
creator | Rodrigues, W. Pecchia, A. Auf der Maur, M. Di Carlo, A. |
description | In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a
s
p
3
d
5
s
∗
+ spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores. |
doi_str_mv | 10.1007/s10825-015-0695-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918270995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918270995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRU1poWnaD-hO0LXbkeSXliH0BYF20ayFIsuOgy05egScH-hv18aFrroYZhjumYETRfcYHjFA_uQwFCSNAY-VsTQ-X0QLnOYkLjDNL6c5Y3EBJL2Obpw7ABAgCV5E3yskTddbtVfaNSeFnA_lgEyFetOHVlikmlrpk2iDQp3ye1M6pLq-NYMqUWUsOgahfeiQFK0cAd8YPeFKK1sPM-288MqhRiMttHHeBumDHTfBNbpGr59bdxtdVaJ16u63L6Pty_PX-i3efLy-r1ebWNIi8zGBnJTZrpCQlFVGpMxJykoJUMlclFiyAnYMiCRUpCUViUgTVlQ7hikllaRAl9HDfLe35hiU8_xggtXjS04YLkgOjKVjCs8paY1zVlW8t00n7MAx8Mk3n33z0TeffPPzyJCZcWNW18r-Xf4f-gEybIcG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918270995</pqid></control><display><type>article</type><title>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Rodrigues, W. ; Pecchia, A. ; Auf der Maur, M. ; Di Carlo, A.</creator><creatorcontrib>Rodrigues, W. ; Pecchia, A. ; Auf der Maur, M. ; Di Carlo, A.</creatorcontrib><description>In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a
s
p
3
d
5
s
∗
+ spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-015-0695-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Aluminum ; Aluminum gallium nitrides ; Clusters ; Eigenvalues ; Eigenvectors ; Electrical Engineering ; Energy ; Engineering ; Graphics processing units ; Hamiltonian functions ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Methods ; Optical and Electronic Materials ; Parameterization ; Quantum dots ; Sparsity ; Spectrum allocation ; Theoretical ; Workstations</subject><ispartof>Journal of computational electronics, 2015-06, Vol.14 (2), p.593-603</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</citedby><cites>FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-015-0695-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918270995?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Rodrigues, W.</creatorcontrib><creatorcontrib>Pecchia, A.</creatorcontrib><creatorcontrib>Auf der Maur, M.</creatorcontrib><creatorcontrib>Di Carlo, A.</creatorcontrib><title>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a
s
p
3
d
5
s
∗
+ spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Aluminum gallium nitrides</subject><subject>Clusters</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Electrical Engineering</subject><subject>Energy</subject><subject>Engineering</subject><subject>Graphics processing units</subject><subject>Hamiltonian functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Optical and Electronic Materials</subject><subject>Parameterization</subject><subject>Quantum dots</subject><subject>Sparsity</subject><subject>Spectrum allocation</subject><subject>Theoretical</subject><subject>Workstations</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtqwzAQRU1poWnaD-hO0LXbkeSXliH0BYF20ayFIsuOgy05egScH-hv18aFrroYZhjumYETRfcYHjFA_uQwFCSNAY-VsTQ-X0QLnOYkLjDNL6c5Y3EBJL2Obpw7ABAgCV5E3yskTddbtVfaNSeFnA_lgEyFetOHVlikmlrpk2iDQp3ye1M6pLq-NYMqUWUsOgahfeiQFK0cAd8YPeFKK1sPM-288MqhRiMttHHeBumDHTfBNbpGr59bdxtdVaJ16u63L6Pty_PX-i3efLy-r1ebWNIi8zGBnJTZrpCQlFVGpMxJykoJUMlclFiyAnYMiCRUpCUViUgTVlQ7hikllaRAl9HDfLe35hiU8_xggtXjS04YLkgOjKVjCs8paY1zVlW8t00n7MAx8Mk3n33z0TeffPPzyJCZcWNW18r-Xf4f-gEybIcG</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Rodrigues, W.</creator><creator>Pecchia, A.</creator><creator>Auf der Maur, M.</creator><creator>Di Carlo, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150601</creationdate><title>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</title><author>Rodrigues, W. ; Pecchia, A. ; Auf der Maur, M. ; Di Carlo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Aluminum gallium nitrides</topic><topic>Clusters</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Electrical Engineering</topic><topic>Energy</topic><topic>Engineering</topic><topic>Graphics processing units</topic><topic>Hamiltonian functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Optical and Electronic Materials</topic><topic>Parameterization</topic><topic>Quantum dots</topic><topic>Sparsity</topic><topic>Spectrum allocation</topic><topic>Theoretical</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, W.</creatorcontrib><creatorcontrib>Pecchia, A.</creatorcontrib><creatorcontrib>Auf der Maur, M.</creatorcontrib><creatorcontrib>Di Carlo, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, W.</au><au>Pecchia, A.</au><au>Auf der Maur, M.</au><au>Di Carlo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>14</volume><issue>2</issue><spage>593</spage><epage>603</epage><pages>593-603</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a
s
p
3
d
5
s
∗
+ spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-015-0695-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2015-06, Vol.14 (2), p.593-603 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918270995 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Aluminum Aluminum gallium nitrides Clusters Eigenvalues Eigenvectors Electrical Engineering Energy Engineering Graphics processing units Hamiltonian functions Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Methods Optical and Electronic Materials Parameterization Quantum dots Sparsity Spectrum allocation Theoretical Workstations |
title | A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20study%20of%20popular%20eigenvalue%20methods%20employed%20for%20quantum%20calculation%20of%20energy%20eigenstates%20in%20nanostructures%20using%20GPUs&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Rodrigues,%20W.&rft.date=2015-06-01&rft.volume=14&rft.issue=2&rft.spage=593&rft.epage=603&rft.pages=593-603&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-015-0695-z&rft_dat=%3Cproquest_cross%3E2918270995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918270995&rft_id=info:pmid/&rfr_iscdi=true |