A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs

In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a s p 3 d 5 s ∗...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2015-06, Vol.14 (2), p.593-603
Hauptverfasser: Rodrigues, W., Pecchia, A., Auf der Maur, M., Di Carlo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 2
container_start_page 593
container_title Journal of computational electronics
container_volume 14
creator Rodrigues, W.
Pecchia, A.
Auf der Maur, M.
Di Carlo, A.
description In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a s p 3 d 5 s ∗  + spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.
doi_str_mv 10.1007/s10825-015-0695-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918270995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918270995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRU1poWnaD-hO0LXbkeSXliH0BYF20ayFIsuOgy05egScH-hv18aFrroYZhjumYETRfcYHjFA_uQwFCSNAY-VsTQ-X0QLnOYkLjDNL6c5Y3EBJL2Obpw7ABAgCV5E3yskTddbtVfaNSeFnA_lgEyFetOHVlikmlrpk2iDQp3ye1M6pLq-NYMqUWUsOgahfeiQFK0cAd8YPeFKK1sPM-288MqhRiMttHHeBumDHTfBNbpGr59bdxtdVaJ16u63L6Pty_PX-i3efLy-r1ebWNIi8zGBnJTZrpCQlFVGpMxJykoJUMlclFiyAnYMiCRUpCUViUgTVlQ7hikllaRAl9HDfLe35hiU8_xggtXjS04YLkgOjKVjCs8paY1zVlW8t00n7MAx8Mk3n33z0TeffPPzyJCZcWNW18r-Xf4f-gEybIcG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918270995</pqid></control><display><type>article</type><title>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Rodrigues, W. ; Pecchia, A. ; Auf der Maur, M. ; Di Carlo, A.</creator><creatorcontrib>Rodrigues, W. ; Pecchia, A. ; Auf der Maur, M. ; Di Carlo, A.</creatorcontrib><description>In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a s p 3 d 5 s ∗  + spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-015-0695-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Aluminum ; Aluminum gallium nitrides ; Clusters ; Eigenvalues ; Eigenvectors ; Electrical Engineering ; Energy ; Engineering ; Graphics processing units ; Hamiltonian functions ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Methods ; Optical and Electronic Materials ; Parameterization ; Quantum dots ; Sparsity ; Spectrum allocation ; Theoretical ; Workstations</subject><ispartof>Journal of computational electronics, 2015-06, Vol.14 (2), p.593-603</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</citedby><cites>FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-015-0695-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918270995?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Rodrigues, W.</creatorcontrib><creatorcontrib>Pecchia, A.</creatorcontrib><creatorcontrib>Auf der Maur, M.</creatorcontrib><creatorcontrib>Di Carlo, A.</creatorcontrib><title>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a s p 3 d 5 s ∗  + spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Aluminum gallium nitrides</subject><subject>Clusters</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Electrical Engineering</subject><subject>Energy</subject><subject>Engineering</subject><subject>Graphics processing units</subject><subject>Hamiltonian functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Optical and Electronic Materials</subject><subject>Parameterization</subject><subject>Quantum dots</subject><subject>Sparsity</subject><subject>Spectrum allocation</subject><subject>Theoretical</subject><subject>Workstations</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtqwzAQRU1poWnaD-hO0LXbkeSXliH0BYF20ayFIsuOgy05egScH-hv18aFrroYZhjumYETRfcYHjFA_uQwFCSNAY-VsTQ-X0QLnOYkLjDNL6c5Y3EBJL2Obpw7ABAgCV5E3yskTddbtVfaNSeFnA_lgEyFetOHVlikmlrpk2iDQp3ye1M6pLq-NYMqUWUsOgahfeiQFK0cAd8YPeFKK1sPM-288MqhRiMttHHeBumDHTfBNbpGr59bdxtdVaJ16u63L6Pty_PX-i3efLy-r1ebWNIi8zGBnJTZrpCQlFVGpMxJykoJUMlclFiyAnYMiCRUpCUViUgTVlQ7hikllaRAl9HDfLe35hiU8_xggtXjS04YLkgOjKVjCs8paY1zVlW8t00n7MAx8Mk3n33z0TeffPPzyJCZcWNW18r-Xf4f-gEybIcG</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Rodrigues, W.</creator><creator>Pecchia, A.</creator><creator>Auf der Maur, M.</creator><creator>Di Carlo, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150601</creationdate><title>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</title><author>Rodrigues, W. ; Pecchia, A. ; Auf der Maur, M. ; Di Carlo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-2072d6b8c04df62cc7259dc00fc7ad1c980b902c23a5d3a4a5498fb91332fc303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Aluminum gallium nitrides</topic><topic>Clusters</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Electrical Engineering</topic><topic>Energy</topic><topic>Engineering</topic><topic>Graphics processing units</topic><topic>Hamiltonian functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Optical and Electronic Materials</topic><topic>Parameterization</topic><topic>Quantum dots</topic><topic>Sparsity</topic><topic>Spectrum allocation</topic><topic>Theoretical</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, W.</creatorcontrib><creatorcontrib>Pecchia, A.</creatorcontrib><creatorcontrib>Auf der Maur, M.</creatorcontrib><creatorcontrib>Di Carlo, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, W.</au><au>Pecchia, A.</au><au>Auf der Maur, M.</au><au>Di Carlo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>14</volume><issue>2</issue><spage>593</spage><epage>603</epage><pages>593-603</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a s p 3 d 5 s ∗  + spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780–7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-015-0695-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2015-06, Vol.14 (2), p.593-603
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918270995
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Aluminum
Aluminum gallium nitrides
Clusters
Eigenvalues
Eigenvectors
Electrical Engineering
Energy
Engineering
Graphics processing units
Hamiltonian functions
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Methods
Optical and Electronic Materials
Parameterization
Quantum dots
Sparsity
Spectrum allocation
Theoretical
Workstations
title A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20study%20of%20popular%20eigenvalue%20methods%20employed%20for%20quantum%20calculation%20of%20energy%20eigenstates%20in%20nanostructures%20using%20GPUs&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Rodrigues,%20W.&rft.date=2015-06-01&rft.volume=14&rft.issue=2&rft.spage=593&rft.epage=603&rft.pages=593-603&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-015-0695-z&rft_dat=%3Cproquest_cross%3E2918270995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918270995&rft_id=info:pmid/&rfr_iscdi=true