An Intelligent Diagnostic System for Evaluating Operator’s Emotions: EEG Processing Toolkit
The article describes a soft computing optimizer of fuzzy controllers. The optimizer is structurally implemented on the basis of three genetic algorithms. From the point of view of the theory of artificial intelligence and fuzzy systems, the soft computing optimizer functions as a universal approxim...
Gespeichert in:
Veröffentlicht in: | Biomedical engineering 2020-07, Vol.54 (2), p.145-148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | Biomedical engineering |
container_volume | 54 |
creator | Ulyanov, S. V. Mamaeva, А. A. Shevchenko, A. V. |
description | The article describes a soft computing optimizer of fuzzy controllers. The optimizer is structurally implemented on the basis of three genetic algorithms. From the point of view of the theory of artificial intelligence and fuzzy systems, the soft computing optimizer functions as a universal approximator of the training signal operating with the required accuracy; from the point of view of the theory of intelligent management systems, the approximator provides deep machine learning. |
doi_str_mv | 10.1007/s10527-020-09992-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918267356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A635446528</galeid><sourcerecordid>A635446528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-9fa3655076e62625186c9ac840e16a8583b49dac8a5d131083902d2c8f3ca943</originalsourceid><addsrcrecordid>eNp9kd9qFDEUxoNYcG19Aa8CXnkxNX8mmcS7pY51oVCxeyshZjND6kyy5mSLvfM1fD2fxGy3UBZEzsXhfPy-czh8CL2m5JwS0r0DSgTrGsJIQ7TWrGmfoQUVHW8UE_I5WhBCZMO5Vi_QS4DbOgql2AJ9XUa8isVPUxh9LPhDsGNMUILDN_dQ_IyHlHF_Z6edLSGO-Hrrsy0p__n1G3A_pxJShPe47y_x55ycB9hT65Sm76GcoZPBTuBfPfZTtP7Yry8-NVfXl6uL5VXjeEdLowfLpRCkk14yyQRV0mnrVEs8lVYJxb-1elMFKzaUU6K4JmzDnBq4s7rlp-jNYe02px87D8Xcpl2O9aJhmiomOy7kEzXayZsQh1SydXMAZ5aSi7aVgqlKnf-DqrXxc3Ap-iFU_cjw9shQmeJ_ltHuAMzq5ssxyw6sywkg-8Fsc5htvjeUmH2Q5hCkqUGahyDN_jt-MEGF4-jz03f_cf0FaeGeXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918267356</pqid></control><display><type>article</type><title>An Intelligent Diagnostic System for Evaluating Operator’s Emotions: EEG Processing Toolkit</title><source>Springer Nature - Complete Springer Journals</source><creator>Ulyanov, S. V. ; Mamaeva, А. A. ; Shevchenko, A. V.</creator><creatorcontrib>Ulyanov, S. V. ; Mamaeva, А. A. ; Shevchenko, A. V.</creatorcontrib><description>The article describes a soft computing optimizer of fuzzy controllers. The optimizer is structurally implemented on the basis of three genetic algorithms. From the point of view of the theory of artificial intelligence and fuzzy systems, the soft computing optimizer functions as a universal approximator of the training signal operating with the required accuracy; from the point of view of the theory of intelligent management systems, the approximator provides deep machine learning.</description><identifier>ISSN: 0006-3398</identifier><identifier>EISSN: 1573-8256</identifier><identifier>DOI: 10.1007/s10527-020-09992-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial intelligence ; Behavior ; Biomaterials ; Biomedical Engineering and Bioengineering ; Diagnostic systems ; Emotions ; Engineering ; Fourier transforms ; Fuzzy control ; Fuzzy systems ; Genetic algorithms ; Knowledge ; Machine learning ; Management systems ; Neural networks ; Signal processing ; Soft computing ; Software</subject><ispartof>Biomedical engineering, 2020-07, Vol.54 (2), p.145-148</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-9fa3655076e62625186c9ac840e16a8583b49dac8a5d131083902d2c8f3ca943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10527-020-09992-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10527-020-09992-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ulyanov, S. V.</creatorcontrib><creatorcontrib>Mamaeva, А. A.</creatorcontrib><creatorcontrib>Shevchenko, A. V.</creatorcontrib><title>An Intelligent Diagnostic System for Evaluating Operator’s Emotions: EEG Processing Toolkit</title><title>Biomedical engineering</title><addtitle>Biomed Eng</addtitle><description>The article describes a soft computing optimizer of fuzzy controllers. The optimizer is structurally implemented on the basis of three genetic algorithms. From the point of view of the theory of artificial intelligence and fuzzy systems, the soft computing optimizer functions as a universal approximator of the training signal operating with the required accuracy; from the point of view of the theory of intelligent management systems, the approximator provides deep machine learning.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Behavior</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Diagnostic systems</subject><subject>Emotions</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Knowledge</subject><subject>Machine learning</subject><subject>Management systems</subject><subject>Neural networks</subject><subject>Signal processing</subject><subject>Soft computing</subject><subject>Software</subject><issn>0006-3398</issn><issn>1573-8256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd9qFDEUxoNYcG19Aa8CXnkxNX8mmcS7pY51oVCxeyshZjND6kyy5mSLvfM1fD2fxGy3UBZEzsXhfPy-czh8CL2m5JwS0r0DSgTrGsJIQ7TWrGmfoQUVHW8UE_I5WhBCZMO5Vi_QS4DbOgql2AJ9XUa8isVPUxh9LPhDsGNMUILDN_dQ_IyHlHF_Z6edLSGO-Hrrsy0p__n1G3A_pxJShPe47y_x55ycB9hT65Sm76GcoZPBTuBfPfZTtP7Yry8-NVfXl6uL5VXjeEdLowfLpRCkk14yyQRV0mnrVEs8lVYJxb-1elMFKzaUU6K4JmzDnBq4s7rlp-jNYe02px87D8Xcpl2O9aJhmiomOy7kEzXayZsQh1SydXMAZ5aSi7aVgqlKnf-DqrXxc3Ap-iFU_cjw9shQmeJ_ltHuAMzq5ssxyw6sywkg-8Fsc5htvjeUmH2Q5hCkqUGahyDN_jt-MEGF4-jz03f_cf0FaeGeXg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Ulyanov, S. V.</creator><creator>Mamaeva, А. A.</creator><creator>Shevchenko, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200701</creationdate><title>An Intelligent Diagnostic System for Evaluating Operator’s Emotions: EEG Processing Toolkit</title><author>Ulyanov, S. V. ; Mamaeva, А. A. ; Shevchenko, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-9fa3655076e62625186c9ac840e16a8583b49dac8a5d131083902d2c8f3ca943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Behavior</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Diagnostic systems</topic><topic>Emotions</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Knowledge</topic><topic>Machine learning</topic><topic>Management systems</topic><topic>Neural networks</topic><topic>Signal processing</topic><topic>Soft computing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulyanov, S. V.</creatorcontrib><creatorcontrib>Mamaeva, А. A.</creatorcontrib><creatorcontrib>Shevchenko, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulyanov, S. V.</au><au>Mamaeva, А. A.</au><au>Shevchenko, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Diagnostic System for Evaluating Operator’s Emotions: EEG Processing Toolkit</atitle><jtitle>Biomedical engineering</jtitle><stitle>Biomed Eng</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>54</volume><issue>2</issue><spage>145</spage><epage>148</epage><pages>145-148</pages><issn>0006-3398</issn><eissn>1573-8256</eissn><abstract>The article describes a soft computing optimizer of fuzzy controllers. The optimizer is structurally implemented on the basis of three genetic algorithms. From the point of view of the theory of artificial intelligence and fuzzy systems, the soft computing optimizer functions as a universal approximator of the training signal operating with the required accuracy; from the point of view of the theory of intelligent management systems, the approximator provides deep machine learning.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10527-020-09992-4</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3398 |
ispartof | Biomedical engineering, 2020-07, Vol.54 (2), p.145-148 |
issn | 0006-3398 1573-8256 |
language | eng |
recordid | cdi_proquest_journals_2918267356 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial intelligence Behavior Biomaterials Biomedical Engineering and Bioengineering Diagnostic systems Emotions Engineering Fourier transforms Fuzzy control Fuzzy systems Genetic algorithms Knowledge Machine learning Management systems Neural networks Signal processing Soft computing Software |
title | An Intelligent Diagnostic System for Evaluating Operator’s Emotions: EEG Processing Toolkit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Diagnostic%20System%20for%20Evaluating%20Operator%E2%80%99s%20Emotions:%20EEG%20Processing%20Toolkit&rft.jtitle=Biomedical%20engineering&rft.au=Ulyanov,%20S.%20V.&rft.date=2020-07-01&rft.volume=54&rft.issue=2&rft.spage=145&rft.epage=148&rft.pages=145-148&rft.issn=0006-3398&rft.eissn=1573-8256&rft_id=info:doi/10.1007/s10527-020-09992-4&rft_dat=%3Cgale_proqu%3EA635446528%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918267356&rft_id=info:pmid/&rft_galeid=A635446528&rfr_iscdi=true |