VSP—a quantum-electronic simulation framework
The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistor...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2013-12, Vol.12 (4), p.701-721 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 721 |
---|---|
container_issue | 4 |
container_start_page | 701 |
container_title | Journal of computational electronics |
container_volume | 12 |
creator | Baumgartner, Oskar Stanojevic, Zlatan Schnass, Klaus Karner, Markus Kosina, Hans |
description | The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors. |
doi_str_mv | 10.1007/s10825-013-0535-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918266883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918266883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4K7gOvbeZPK3lOIfFBQsbkOaJjK1M9MmM0h3PoRP6JM4ZQRXru5ZnO9c-Ai5RLhGADXNCJoJCsgpCC7o_oiMUChGNXJ1fMjSUA1MnJKznNcADFiBIzJ9fXn-_vxyk13n6raraNgE36amLv0kl1W3cW3Z1JOYXBU-mvR-Tk6i2-Rw8XvHZHF3u5g90PnT_ePsZk49R9lS7VHDElQAxqAwBr0ISkRQWkos3FJGrwoWPTcOi7AqpBRLbQxIEw2TKz4mV8PsNjW7LuTWrpsu1f1HywxqJqXWvG_h0PKpyTmFaLeprFzaWwR70GIHLbbXYg9a7L5n2MDkvlu_hfS3_D_0AxldZN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918266883</pqid></control><display><type>article</type><title>VSP—a quantum-electronic simulation framework</title><source>SpringerLink_现刊</source><source>ProQuest Central</source><creator>Baumgartner, Oskar ; Stanojevic, Zlatan ; Schnass, Klaus ; Karner, Markus ; Kosina, Hans</creator><creatorcontrib>Baumgartner, Oskar ; Stanojevic, Zlatan ; Schnass, Klaus ; Karner, Markus ; Kosina, Hans</creatorcontrib><description>The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-013-0535-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Automation ; Carrier density ; Design optimization ; Efficiency ; Electrical Engineering ; Electronic engineering ; Engineering ; Flexibility ; Heterostructures ; Interfaces ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Numerical methods ; Optical and Electronic Materials ; Quantum dots ; Resonant tunneling ; Simulation ; Software ; Software packages ; Theoretical ; Transistors ; Tunnel diodes</subject><ispartof>Journal of computational electronics, 2013-12, Vol.12 (4), p.701-721</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</citedby><cites>FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-013-0535-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918266883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Baumgartner, Oskar</creatorcontrib><creatorcontrib>Stanojevic, Zlatan</creatorcontrib><creatorcontrib>Schnass, Klaus</creatorcontrib><creatorcontrib>Karner, Markus</creatorcontrib><creatorcontrib>Kosina, Hans</creatorcontrib><title>VSP—a quantum-electronic simulation framework</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.</description><subject>Automation</subject><subject>Carrier density</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>Electronic engineering</subject><subject>Engineering</subject><subject>Flexibility</subject><subject>Heterostructures</subject><subject>Interfaces</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Numerical methods</subject><subject>Optical and Electronic Materials</subject><subject>Quantum dots</subject><subject>Resonant tunneling</subject><subject>Simulation</subject><subject>Software</subject><subject>Software packages</subject><subject>Theoretical</subject><subject>Transistors</subject><subject>Tunnel diodes</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4K7gOvbeZPK3lOIfFBQsbkOaJjK1M9MmM0h3PoRP6JM4ZQRXru5ZnO9c-Ai5RLhGADXNCJoJCsgpCC7o_oiMUChGNXJ1fMjSUA1MnJKznNcADFiBIzJ9fXn-_vxyk13n6raraNgE36amLv0kl1W3cW3Z1JOYXBU-mvR-Tk6i2-Rw8XvHZHF3u5g90PnT_ePsZk49R9lS7VHDElQAxqAwBr0ISkRQWkos3FJGrwoWPTcOi7AqpBRLbQxIEw2TKz4mV8PsNjW7LuTWrpsu1f1HywxqJqXWvG_h0PKpyTmFaLeprFzaWwR70GIHLbbXYg9a7L5n2MDkvlu_hfS3_D_0AxldZN4</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Baumgartner, Oskar</creator><creator>Stanojevic, Zlatan</creator><creator>Schnass, Klaus</creator><creator>Karner, Markus</creator><creator>Kosina, Hans</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20131201</creationdate><title>VSP—a quantum-electronic simulation framework</title><author>Baumgartner, Oskar ; Stanojevic, Zlatan ; Schnass, Klaus ; Karner, Markus ; Kosina, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automation</topic><topic>Carrier density</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>Electronic engineering</topic><topic>Engineering</topic><topic>Flexibility</topic><topic>Heterostructures</topic><topic>Interfaces</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Numerical methods</topic><topic>Optical and Electronic Materials</topic><topic>Quantum dots</topic><topic>Resonant tunneling</topic><topic>Simulation</topic><topic>Software</topic><topic>Software packages</topic><topic>Theoretical</topic><topic>Transistors</topic><topic>Tunnel diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumgartner, Oskar</creatorcontrib><creatorcontrib>Stanojevic, Zlatan</creatorcontrib><creatorcontrib>Schnass, Klaus</creatorcontrib><creatorcontrib>Karner, Markus</creatorcontrib><creatorcontrib>Kosina, Hans</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumgartner, Oskar</au><au>Stanojevic, Zlatan</au><au>Schnass, Klaus</au><au>Karner, Markus</au><au>Kosina, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VSP—a quantum-electronic simulation framework</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>12</volume><issue>4</issue><spage>701</spage><epage>721</epage><pages>701-721</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-013-0535-y</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2013-12, Vol.12 (4), p.701-721 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918266883 |
source | SpringerLink_现刊; ProQuest Central |
subjects | Automation Carrier density Design optimization Efficiency Electrical Engineering Electronic engineering Engineering Flexibility Heterostructures Interfaces Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Numerical methods Optical and Electronic Materials Quantum dots Resonant tunneling Simulation Software Software packages Theoretical Transistors Tunnel diodes |
title | VSP—a quantum-electronic simulation framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VSP%E2%80%94a%20quantum-electronic%20simulation%20framework&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Baumgartner,%20Oskar&rft.date=2013-12-01&rft.volume=12&rft.issue=4&rft.spage=701&rft.epage=721&rft.pages=701-721&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-013-0535-y&rft_dat=%3Cproquest_cross%3E2918266883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918266883&rft_id=info:pmid/&rfr_iscdi=true |