VSP—a quantum-electronic simulation framework

The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2013-12, Vol.12 (4), p.701-721
Hauptverfasser: Baumgartner, Oskar, Stanojevic, Zlatan, Schnass, Klaus, Karner, Markus, Kosina, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 4
container_start_page 701
container_title Journal of computational electronics
container_volume 12
creator Baumgartner, Oskar
Stanojevic, Zlatan
Schnass, Klaus
Karner, Markus
Kosina, Hans
description The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.
doi_str_mv 10.1007/s10825-013-0535-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918266883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918266883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4K7gOvbeZPK3lOIfFBQsbkOaJjK1M9MmM0h3PoRP6JM4ZQRXru5ZnO9c-Ai5RLhGADXNCJoJCsgpCC7o_oiMUChGNXJ1fMjSUA1MnJKznNcADFiBIzJ9fXn-_vxyk13n6raraNgE36amLv0kl1W3cW3Z1JOYXBU-mvR-Tk6i2-Rw8XvHZHF3u5g90PnT_ePsZk49R9lS7VHDElQAxqAwBr0ISkRQWkos3FJGrwoWPTcOi7AqpBRLbQxIEw2TKz4mV8PsNjW7LuTWrpsu1f1HywxqJqXWvG_h0PKpyTmFaLeprFzaWwR70GIHLbbXYg9a7L5n2MDkvlu_hfS3_D_0AxldZN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918266883</pqid></control><display><type>article</type><title>VSP—a quantum-electronic simulation framework</title><source>SpringerLink_现刊</source><source>ProQuest Central</source><creator>Baumgartner, Oskar ; Stanojevic, Zlatan ; Schnass, Klaus ; Karner, Markus ; Kosina, Hans</creator><creatorcontrib>Baumgartner, Oskar ; Stanojevic, Zlatan ; Schnass, Klaus ; Karner, Markus ; Kosina, Hans</creatorcontrib><description>The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-013-0535-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Automation ; Carrier density ; Design optimization ; Efficiency ; Electrical Engineering ; Electronic engineering ; Engineering ; Flexibility ; Heterostructures ; Interfaces ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Numerical methods ; Optical and Electronic Materials ; Quantum dots ; Resonant tunneling ; Simulation ; Software ; Software packages ; Theoretical ; Transistors ; Tunnel diodes</subject><ispartof>Journal of computational electronics, 2013-12, Vol.12 (4), p.701-721</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</citedby><cites>FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-013-0535-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918266883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Baumgartner, Oskar</creatorcontrib><creatorcontrib>Stanojevic, Zlatan</creatorcontrib><creatorcontrib>Schnass, Klaus</creatorcontrib><creatorcontrib>Karner, Markus</creatorcontrib><creatorcontrib>Kosina, Hans</creatorcontrib><title>VSP—a quantum-electronic simulation framework</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.</description><subject>Automation</subject><subject>Carrier density</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>Electronic engineering</subject><subject>Engineering</subject><subject>Flexibility</subject><subject>Heterostructures</subject><subject>Interfaces</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Numerical methods</subject><subject>Optical and Electronic Materials</subject><subject>Quantum dots</subject><subject>Resonant tunneling</subject><subject>Simulation</subject><subject>Software</subject><subject>Software packages</subject><subject>Theoretical</subject><subject>Transistors</subject><subject>Tunnel diodes</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4K7gOvbeZPK3lOIfFBQsbkOaJjK1M9MmM0h3PoRP6JM4ZQRXru5ZnO9c-Ai5RLhGADXNCJoJCsgpCC7o_oiMUChGNXJ1fMjSUA1MnJKznNcADFiBIzJ9fXn-_vxyk13n6raraNgE36amLv0kl1W3cW3Z1JOYXBU-mvR-Tk6i2-Rw8XvHZHF3u5g90PnT_ePsZk49R9lS7VHDElQAxqAwBr0ISkRQWkos3FJGrwoWPTcOi7AqpBRLbQxIEw2TKz4mV8PsNjW7LuTWrpsu1f1HywxqJqXWvG_h0PKpyTmFaLeprFzaWwR70GIHLbbXYg9a7L5n2MDkvlu_hfS3_D_0AxldZN4</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Baumgartner, Oskar</creator><creator>Stanojevic, Zlatan</creator><creator>Schnass, Klaus</creator><creator>Karner, Markus</creator><creator>Kosina, Hans</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20131201</creationdate><title>VSP—a quantum-electronic simulation framework</title><author>Baumgartner, Oskar ; Stanojevic, Zlatan ; Schnass, Klaus ; Karner, Markus ; Kosina, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8c180b07e02204991c5e75f0786614ab6fc742fc39a14ed4665b899069f926d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automation</topic><topic>Carrier density</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>Electronic engineering</topic><topic>Engineering</topic><topic>Flexibility</topic><topic>Heterostructures</topic><topic>Interfaces</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Numerical methods</topic><topic>Optical and Electronic Materials</topic><topic>Quantum dots</topic><topic>Resonant tunneling</topic><topic>Simulation</topic><topic>Software</topic><topic>Software packages</topic><topic>Theoretical</topic><topic>Transistors</topic><topic>Tunnel diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumgartner, Oskar</creatorcontrib><creatorcontrib>Stanojevic, Zlatan</creatorcontrib><creatorcontrib>Schnass, Klaus</creatorcontrib><creatorcontrib>Karner, Markus</creatorcontrib><creatorcontrib>Kosina, Hans</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumgartner, Oskar</au><au>Stanojevic, Zlatan</au><au>Schnass, Klaus</au><au>Karner, Markus</au><au>Kosina, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VSP—a quantum-electronic simulation framework</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>12</volume><issue>4</issue><spage>701</spage><epage>721</epage><pages>701-721</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-013-0535-y</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2013-12, Vol.12 (4), p.701-721
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918266883
source SpringerLink_现刊; ProQuest Central
subjects Automation
Carrier density
Design optimization
Efficiency
Electrical Engineering
Electronic engineering
Engineering
Flexibility
Heterostructures
Interfaces
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Numerical methods
Optical and Electronic Materials
Quantum dots
Resonant tunneling
Simulation
Software
Software packages
Theoretical
Transistors
Tunnel diodes
title VSP—a quantum-electronic simulation framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VSP%E2%80%94a%20quantum-electronic%20simulation%20framework&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Baumgartner,%20Oskar&rft.date=2013-12-01&rft.volume=12&rft.issue=4&rft.spage=701&rft.epage=721&rft.pages=701-721&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-013-0535-y&rft_dat=%3Cproquest_cross%3E2918266883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918266883&rft_id=info:pmid/&rfr_iscdi=true