Modeling and simulation of smart grid-aware edge computing federations
Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2023-02, Vol.26 (1), p.719-743 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 743 |
---|---|
container_issue | 1 |
container_start_page | 719 |
container_title | Cluster computing |
container_volume | 26 |
creator | Cárdenas, Román Arroba, Patricia Risco-Martín, José L. Moya, José M. |
description | Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&S&O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%. |
doi_str_mv | 10.1007/s10586-022-03797-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918266474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918266474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkf3KUYq1Q8aLnkG6SZUu7W5NdxG9v2hW8eZqB-b03Mw-hWwL3BEA9ZAJCSwyUYmDKKKzP0IwIxbASnJ2XnpWx0kJdoquctwBgFDUztHztfdi1XVO5zle53Y87N7R9V_WxynuXhqpJrcfuy6VQBd-Equ73h3E4KmLwIZ3ofI0uotvlcPNb5-hj-fS-WOH12_PL4nGNa2rYgDfGwQaiFCYQrjkHpoOE6GsJwrGojKeR1Io7EWVdC70JXDvGyqUxOGo8m6O7yfeQ-s8x5MFu-zF1ZaWlhmgqJVe8UHSi6tTnnEK0h9SWZ74tAXvMy0552ZKXPeVldRGxSZQL3DUh_Vn_o_oBaLJt7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918266474</pqid></control><display><type>article</type><title>Modeling and simulation of smart grid-aware edge computing federations</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Cárdenas, Román ; Arroba, Patricia ; Risco-Martín, José L. ; Moya, José M.</creator><creatorcontrib>Cárdenas, Román ; Arroba, Patricia ; Risco-Martín, José L. ; Moya, José M.</creatorcontrib><description>Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&S&O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-022-03797-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Computer centers ; Computer Communication Networks ; Computer Science ; Cooling ; Edge computing ; Electricity ; Electricity pricing ; Energy consumption ; Energy efficiency ; Federations ; Internet of Things ; Internet service providers ; Modelling ; Network latency ; Operating Systems ; Processor Architectures ; Quality of service ; Resource management ; Simulation ; Smart grid ; Software</subject><ispartof>Cluster computing, 2023-02, Vol.26 (1), p.719-743</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</citedby><cites>FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</cites><orcidid>0000-0003-0762-4425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-022-03797-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918266474?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Cárdenas, Román</creatorcontrib><creatorcontrib>Arroba, Patricia</creatorcontrib><creatorcontrib>Risco-Martín, José L.</creatorcontrib><creatorcontrib>Moya, José M.</creatorcontrib><title>Modeling and simulation of smart grid-aware edge computing federations</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&S&O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.</description><subject>Cloud computing</subject><subject>Computer centers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cooling</subject><subject>Edge computing</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Federations</subject><subject>Internet of Things</subject><subject>Internet service providers</subject><subject>Modelling</subject><subject>Network latency</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Quality of service</subject><subject>Resource management</subject><subject>Simulation</subject><subject>Smart grid</subject><subject>Software</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkf3KUYq1Q8aLnkG6SZUu7W5NdxG9v2hW8eZqB-b03Mw-hWwL3BEA9ZAJCSwyUYmDKKKzP0IwIxbASnJ2XnpWx0kJdoquctwBgFDUztHztfdi1XVO5zle53Y87N7R9V_WxynuXhqpJrcfuy6VQBd-Equ73h3E4KmLwIZ3ofI0uotvlcPNb5-hj-fS-WOH12_PL4nGNa2rYgDfGwQaiFCYQrjkHpoOE6GsJwrGojKeR1Io7EWVdC70JXDvGyqUxOGo8m6O7yfeQ-s8x5MFu-zF1ZaWlhmgqJVe8UHSi6tTnnEK0h9SWZ74tAXvMy0552ZKXPeVldRGxSZQL3DUh_Vn_o_oBaLJt7g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Cárdenas, Román</creator><creator>Arroba, Patricia</creator><creator>Risco-Martín, José L.</creator><creator>Moya, José M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0762-4425</orcidid></search><sort><creationdate>20230201</creationdate><title>Modeling and simulation of smart grid-aware edge computing federations</title><author>Cárdenas, Román ; Arroba, Patricia ; Risco-Martín, José L. ; Moya, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Computer centers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cooling</topic><topic>Edge computing</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Federations</topic><topic>Internet of Things</topic><topic>Internet service providers</topic><topic>Modelling</topic><topic>Network latency</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Quality of service</topic><topic>Resource management</topic><topic>Simulation</topic><topic>Smart grid</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cárdenas, Román</creatorcontrib><creatorcontrib>Arroba, Patricia</creatorcontrib><creatorcontrib>Risco-Martín, José L.</creatorcontrib><creatorcontrib>Moya, José M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cárdenas, Román</au><au>Arroba, Patricia</au><au>Risco-Martín, José L.</au><au>Moya, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of smart grid-aware edge computing federations</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>26</volume><issue>1</issue><spage>719</spage><epage>743</epage><pages>719-743</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&S&O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-022-03797-8</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0762-4425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2023-02, Vol.26 (1), p.719-743 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918266474 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Cloud computing Computer centers Computer Communication Networks Computer Science Cooling Edge computing Electricity Electricity pricing Energy consumption Energy efficiency Federations Internet of Things Internet service providers Modelling Network latency Operating Systems Processor Architectures Quality of service Resource management Simulation Smart grid Software |
title | Modeling and simulation of smart grid-aware edge computing federations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20smart%20grid-aware%20edge%20computing%20federations&rft.jtitle=Cluster%20computing&rft.au=C%C3%A1rdenas,%20Rom%C3%A1n&rft.date=2023-02-01&rft.volume=26&rft.issue=1&rft.spage=719&rft.epage=743&rft.pages=719-743&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-022-03797-8&rft_dat=%3Cproquest_cross%3E2918266474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918266474&rft_id=info:pmid/&rfr_iscdi=true |