Modeling and simulation of smart grid-aware edge computing federations

Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2023-02, Vol.26 (1), p.719-743
Hauptverfasser: Cárdenas, Román, Arroba, Patricia, Risco-Martín, José L., Moya, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue 1
container_start_page 719
container_title Cluster computing
container_volume 26
creator Cárdenas, Román
Arroba, Patricia
Risco-Martín, José L.
Moya, José M.
description Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&S&O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.
doi_str_mv 10.1007/s10586-022-03797-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918266474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918266474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkf3KUYq1Q8aLnkG6SZUu7W5NdxG9v2hW8eZqB-b03Mw-hWwL3BEA9ZAJCSwyUYmDKKKzP0IwIxbASnJ2XnpWx0kJdoquctwBgFDUztHztfdi1XVO5zle53Y87N7R9V_WxynuXhqpJrcfuy6VQBd-Equ73h3E4KmLwIZ3ofI0uotvlcPNb5-hj-fS-WOH12_PL4nGNa2rYgDfGwQaiFCYQrjkHpoOE6GsJwrGojKeR1Io7EWVdC70JXDvGyqUxOGo8m6O7yfeQ-s8x5MFu-zF1ZaWlhmgqJVe8UHSi6tTnnEK0h9SWZ74tAXvMy0552ZKXPeVldRGxSZQL3DUh_Vn_o_oBaLJt7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918266474</pqid></control><display><type>article</type><title>Modeling and simulation of smart grid-aware edge computing federations</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Cárdenas, Román ; Arroba, Patricia ; Risco-Martín, José L. ; Moya, José M.</creator><creatorcontrib>Cárdenas, Román ; Arroba, Patricia ; Risco-Martín, José L. ; Moya, José M.</creatorcontrib><description>Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&amp;S&amp;O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-022-03797-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Computer centers ; Computer Communication Networks ; Computer Science ; Cooling ; Edge computing ; Electricity ; Electricity pricing ; Energy consumption ; Energy efficiency ; Federations ; Internet of Things ; Internet service providers ; Modelling ; Network latency ; Operating Systems ; Processor Architectures ; Quality of service ; Resource management ; Simulation ; Smart grid ; Software</subject><ispartof>Cluster computing, 2023-02, Vol.26 (1), p.719-743</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</citedby><cites>FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</cites><orcidid>0000-0003-0762-4425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-022-03797-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918266474?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Cárdenas, Román</creatorcontrib><creatorcontrib>Arroba, Patricia</creatorcontrib><creatorcontrib>Risco-Martín, José L.</creatorcontrib><creatorcontrib>Moya, José M.</creatorcontrib><title>Modeling and simulation of smart grid-aware edge computing federations</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&amp;S&amp;O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.</description><subject>Cloud computing</subject><subject>Computer centers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cooling</subject><subject>Edge computing</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Federations</subject><subject>Internet of Things</subject><subject>Internet service providers</subject><subject>Modelling</subject><subject>Network latency</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Quality of service</subject><subject>Resource management</subject><subject>Simulation</subject><subject>Smart grid</subject><subject>Software</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkf3KUYq1Q8aLnkG6SZUu7W5NdxG9v2hW8eZqB-b03Mw-hWwL3BEA9ZAJCSwyUYmDKKKzP0IwIxbASnJ2XnpWx0kJdoquctwBgFDUztHztfdi1XVO5zle53Y87N7R9V_WxynuXhqpJrcfuy6VQBd-Equ73h3E4KmLwIZ3ofI0uotvlcPNb5-hj-fS-WOH12_PL4nGNa2rYgDfGwQaiFCYQrjkHpoOE6GsJwrGojKeR1Io7EWVdC70JXDvGyqUxOGo8m6O7yfeQ-s8x5MFu-zF1ZaWlhmgqJVe8UHSi6tTnnEK0h9SWZ74tAXvMy0552ZKXPeVldRGxSZQL3DUh_Vn_o_oBaLJt7g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Cárdenas, Román</creator><creator>Arroba, Patricia</creator><creator>Risco-Martín, José L.</creator><creator>Moya, José M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0762-4425</orcidid></search><sort><creationdate>20230201</creationdate><title>Modeling and simulation of smart grid-aware edge computing federations</title><author>Cárdenas, Román ; Arroba, Patricia ; Risco-Martín, José L. ; Moya, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b9a0b0f659e14844038e60fdc605a3f79d2f1c74a5f6cc58be48a33729fea29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Computer centers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cooling</topic><topic>Edge computing</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Federations</topic><topic>Internet of Things</topic><topic>Internet service providers</topic><topic>Modelling</topic><topic>Network latency</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Quality of service</topic><topic>Resource management</topic><topic>Simulation</topic><topic>Smart grid</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cárdenas, Román</creatorcontrib><creatorcontrib>Arroba, Patricia</creatorcontrib><creatorcontrib>Risco-Martín, José L.</creatorcontrib><creatorcontrib>Moya, José M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cárdenas, Román</au><au>Arroba, Patricia</au><au>Risco-Martín, José L.</au><au>Moya, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of smart grid-aware edge computing federations</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>26</volume><issue>1</issue><spage>719</spage><epage>743</epage><pages>719-743</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and optimization (M&amp;S&amp;O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-022-03797-8</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0762-4425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2023-02, Vol.26 (1), p.719-743
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918266474
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Cloud computing
Computer centers
Computer Communication Networks
Computer Science
Cooling
Edge computing
Electricity
Electricity pricing
Energy consumption
Energy efficiency
Federations
Internet of Things
Internet service providers
Modelling
Network latency
Operating Systems
Processor Architectures
Quality of service
Resource management
Simulation
Smart grid
Software
title Modeling and simulation of smart grid-aware edge computing federations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20smart%20grid-aware%20edge%20computing%20federations&rft.jtitle=Cluster%20computing&rft.au=C%C3%A1rdenas,%20Rom%C3%A1n&rft.date=2023-02-01&rft.volume=26&rft.issue=1&rft.spage=719&rft.epage=743&rft.pages=719-743&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-022-03797-8&rft_dat=%3Cproquest_cross%3E2918266474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918266474&rft_id=info:pmid/&rfr_iscdi=true