Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model
As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2019-05, Vol.22 (Suppl 3), p.6295-6304 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6304 |
---|---|
container_issue | Suppl 3 |
container_start_page | 6295 |
container_title | Cluster computing |
container_volume | 22 |
creator | Zhang, Mingchuan Zheng, Ruijuan Chen, Jing Zhu, Junlong Liu, Ruoshui Sun, Shibao Wu, Qingtao |
description | As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method. |
doi_str_mv | 10.1007/s10586-018-1993-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918265803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4DraB7NaymlWqHgRtchM0nK1JnJmMyA_XtTR3AlXLj3ch5wDgC3BN8TjOVDJpgrgTBRiGjNkDgDC8IlQ5Kv2Hm5WUGl4vISXOV8wBhrSfUCfGy6ODaxty2sYzfE3vcjtOU95iaXw8EQk69tHuEwVW1Twzg0fRHAMl1Tp4iqNu7hEPOYYWWzdz-I_Wq6qYPFLcXhCLvofHsNLoJts7_53Uvw_rR5W2_R7vX5Zf24QzUjYkS15ZwK4hTjUmsXhFNUeR2YrkkITlUVxdqtnNVcErfilHMWiBVYCK0cJWwJ7mbfIcXPyefRHOKUSqZsqCaKCq4wKywys0qGnJMPZkhNZ9PREGxOnZq5U1M6NadOjSgaOmty4fZ7n_6c_xd9A2x7euU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265803</pqid></control><display><type>article</type><title>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Mingchuan ; Zheng, Ruijuan ; Chen, Jing ; Zhu, Junlong ; Liu, Ruoshui ; Sun, Shibao ; Wu, Qingtao</creator><creatorcontrib>Zhang, Mingchuan ; Zheng, Ruijuan ; Chen, Jing ; Zhu, Junlong ; Liu, Ruoshui ; Sun, Shibao ; Wu, Qingtao</creatorcontrib><description>As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-1993-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Blogs ; Classification ; Classifiers ; Computer Communication Networks ; Computer Science ; Emotions ; Entropy ; Error analysis ; Mathematical models ; Maximum entropy ; Microblogs ; Operating Systems ; Predictive control ; Principles ; Processor Architectures ; Public opinion ; Sentiment analysis</subject><ispartof>Cluster computing, 2019-05, Vol.22 (Suppl 3), p.6295-6304</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</citedby><cites>FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-018-1993-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918265803?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Mingchuan</creatorcontrib><creatorcontrib>Zheng, Ruijuan</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhu, Junlong</creatorcontrib><creatorcontrib>Liu, Ruoshui</creatorcontrib><creatorcontrib>Sun, Shibao</creatorcontrib><creatorcontrib>Wu, Qingtao</creatorcontrib><title>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blogs</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Emotions</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Microblogs</subject><subject>Operating Systems</subject><subject>Predictive control</subject><subject>Principles</subject><subject>Processor Architectures</subject><subject>Public opinion</subject><subject>Sentiment analysis</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKAzEUDaJgrX6Au4DraB7NaymlWqHgRtchM0nK1JnJmMyA_XtTR3AlXLj3ch5wDgC3BN8TjOVDJpgrgTBRiGjNkDgDC8IlQ5Kv2Hm5WUGl4vISXOV8wBhrSfUCfGy6ODaxty2sYzfE3vcjtOU95iaXw8EQk69tHuEwVW1Twzg0fRHAMl1Tp4iqNu7hEPOYYWWzdz-I_Wq6qYPFLcXhCLvofHsNLoJts7_53Uvw_rR5W2_R7vX5Zf24QzUjYkS15ZwK4hTjUmsXhFNUeR2YrkkITlUVxdqtnNVcErfilHMWiBVYCK0cJWwJ7mbfIcXPyefRHOKUSqZsqCaKCq4wKywys0qGnJMPZkhNZ9PREGxOnZq5U1M6NadOjSgaOmty4fZ7n_6c_xd9A2x7euU</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zhang, Mingchuan</creator><creator>Zheng, Ruijuan</creator><creator>Chen, Jing</creator><creator>Zhu, Junlong</creator><creator>Liu, Ruoshui</creator><creator>Sun, Shibao</creator><creator>Wu, Qingtao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190501</creationdate><title>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</title><author>Zhang, Mingchuan ; Zheng, Ruijuan ; Chen, Jing ; Zhu, Junlong ; Liu, Ruoshui ; Sun, Shibao ; Wu, Qingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blogs</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Emotions</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Microblogs</topic><topic>Operating Systems</topic><topic>Predictive control</topic><topic>Principles</topic><topic>Processor Architectures</topic><topic>Public opinion</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mingchuan</creatorcontrib><creatorcontrib>Zheng, Ruijuan</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhu, Junlong</creatorcontrib><creatorcontrib>Liu, Ruoshui</creatorcontrib><creatorcontrib>Sun, Shibao</creatorcontrib><creatorcontrib>Wu, Qingtao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mingchuan</au><au>Zheng, Ruijuan</au><au>Chen, Jing</au><au>Zhu, Junlong</au><au>Liu, Ruoshui</au><au>Sun, Shibao</au><au>Wu, Qingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 3</issue><spage>6295</spage><epage>6304</epage><pages>6295-6304</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-1993-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2019-05, Vol.22 (Suppl 3), p.6295-6304 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918265803 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Blogs Classification Classifiers Computer Communication Networks Computer Science Emotions Entropy Error analysis Mathematical models Maximum entropy Microblogs Operating Systems Predictive control Principles Processor Architectures Public opinion Sentiment analysis |
title | Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotional%20component%20analysis%20and%20forecast%20public%20opinion%20on%20micro-blog%20posts%20based%20on%20maximum%20entropy%20model&rft.jtitle=Cluster%20computing&rft.au=Zhang,%20Mingchuan&rft.date=2019-05-01&rft.volume=22&rft.issue=Suppl%203&rft.spage=6295&rft.epage=6304&rft.pages=6295-6304&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-1993-6&rft_dat=%3Cproquest_cross%3E2918265803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265803&rft_id=info:pmid/&rfr_iscdi=true |