Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model

As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2019-05, Vol.22 (Suppl 3), p.6295-6304
Hauptverfasser: Zhang, Mingchuan, Zheng, Ruijuan, Chen, Jing, Zhu, Junlong, Liu, Ruoshui, Sun, Shibao, Wu, Qingtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6304
container_issue Suppl 3
container_start_page 6295
container_title Cluster computing
container_volume 22
creator Zhang, Mingchuan
Zheng, Ruijuan
Chen, Jing
Zhu, Junlong
Liu, Ruoshui
Sun, Shibao
Wu, Qingtao
description As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method.
doi_str_mv 10.1007/s10586-018-1993-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918265803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4DraB7NaymlWqHgRtchM0nK1JnJmMyA_XtTR3AlXLj3ch5wDgC3BN8TjOVDJpgrgTBRiGjNkDgDC8IlQ5Kv2Hm5WUGl4vISXOV8wBhrSfUCfGy6ODaxty2sYzfE3vcjtOU95iaXw8EQk69tHuEwVW1Twzg0fRHAMl1Tp4iqNu7hEPOYYWWzdz-I_Wq6qYPFLcXhCLvofHsNLoJts7_53Uvw_rR5W2_R7vX5Zf24QzUjYkS15ZwK4hTjUmsXhFNUeR2YrkkITlUVxdqtnNVcErfilHMWiBVYCK0cJWwJ7mbfIcXPyefRHOKUSqZsqCaKCq4wKywys0qGnJMPZkhNZ9PREGxOnZq5U1M6NadOjSgaOmty4fZ7n_6c_xd9A2x7euU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265803</pqid></control><display><type>article</type><title>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Mingchuan ; Zheng, Ruijuan ; Chen, Jing ; Zhu, Junlong ; Liu, Ruoshui ; Sun, Shibao ; Wu, Qingtao</creator><creatorcontrib>Zhang, Mingchuan ; Zheng, Ruijuan ; Chen, Jing ; Zhu, Junlong ; Liu, Ruoshui ; Sun, Shibao ; Wu, Qingtao</creatorcontrib><description>As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-1993-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Blogs ; Classification ; Classifiers ; Computer Communication Networks ; Computer Science ; Emotions ; Entropy ; Error analysis ; Mathematical models ; Maximum entropy ; Microblogs ; Operating Systems ; Predictive control ; Principles ; Processor Architectures ; Public opinion ; Sentiment analysis</subject><ispartof>Cluster computing, 2019-05, Vol.22 (Suppl 3), p.6295-6304</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</citedby><cites>FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-018-1993-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918265803?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Mingchuan</creatorcontrib><creatorcontrib>Zheng, Ruijuan</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhu, Junlong</creatorcontrib><creatorcontrib>Liu, Ruoshui</creatorcontrib><creatorcontrib>Sun, Shibao</creatorcontrib><creatorcontrib>Wu, Qingtao</creatorcontrib><title>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blogs</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Emotions</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Microblogs</subject><subject>Operating Systems</subject><subject>Predictive control</subject><subject>Principles</subject><subject>Processor Architectures</subject><subject>Public opinion</subject><subject>Sentiment analysis</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKAzEUDaJgrX6Au4DraB7NaymlWqHgRtchM0nK1JnJmMyA_XtTR3AlXLj3ch5wDgC3BN8TjOVDJpgrgTBRiGjNkDgDC8IlQ5Kv2Hm5WUGl4vISXOV8wBhrSfUCfGy6ODaxty2sYzfE3vcjtOU95iaXw8EQk69tHuEwVW1Twzg0fRHAMl1Tp4iqNu7hEPOYYWWzdz-I_Wq6qYPFLcXhCLvofHsNLoJts7_53Uvw_rR5W2_R7vX5Zf24QzUjYkS15ZwK4hTjUmsXhFNUeR2YrkkITlUVxdqtnNVcErfilHMWiBVYCK0cJWwJ7mbfIcXPyefRHOKUSqZsqCaKCq4wKywys0qGnJMPZkhNZ9PREGxOnZq5U1M6NadOjSgaOmty4fZ7n_6c_xd9A2x7euU</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zhang, Mingchuan</creator><creator>Zheng, Ruijuan</creator><creator>Chen, Jing</creator><creator>Zhu, Junlong</creator><creator>Liu, Ruoshui</creator><creator>Sun, Shibao</creator><creator>Wu, Qingtao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190501</creationdate><title>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</title><author>Zhang, Mingchuan ; Zheng, Ruijuan ; Chen, Jing ; Zhu, Junlong ; Liu, Ruoshui ; Sun, Shibao ; Wu, Qingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ca55261d835799df6d828e9f39c1ffd8bb209d4da9571d452553f1a606698d213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blogs</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Emotions</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Microblogs</topic><topic>Operating Systems</topic><topic>Predictive control</topic><topic>Principles</topic><topic>Processor Architectures</topic><topic>Public opinion</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mingchuan</creatorcontrib><creatorcontrib>Zheng, Ruijuan</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhu, Junlong</creatorcontrib><creatorcontrib>Liu, Ruoshui</creatorcontrib><creatorcontrib>Sun, Shibao</creatorcontrib><creatorcontrib>Wu, Qingtao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mingchuan</au><au>Zheng, Ruijuan</au><au>Chen, Jing</au><au>Zhu, Junlong</au><au>Liu, Ruoshui</au><au>Sun, Shibao</au><au>Wu, Qingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 3</issue><spage>6295</spage><epage>6304</epage><pages>6295-6304</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>As the main carrier and platform of spreading network public opinion, micro-blog makes information disseminate more quickly and the influence of public opinion increased. Therefore, accurate analysis and prediction of micro-blog emotion are of great significance for predicting and controlling public opinion. In this paper, we propose the emotional component analysis and public opinion forecast on Chinese micro-blog posts based on maximum entropy model, which uses fine-grained to classify emotion of Chinese micro-blog. Firstly, we preprocess the Chinese micro-blog to filter the noise data. Moreover, the document frequency method and information gain principle are combined to extract features. Secondly, the maximum entropy model is employed to train classifier, and the selective integrated classifiers are used to analyze emotion. On this basis, the principle of the minority subordinate to the majority is used to predict public opinion. In addition, the experimental results have shown the accuracy of the proposed algorithm is 0.88, and the comparison of the four indicators of accuracy, recall, F-Measure and convergence error verify the feasibility and effectiveness of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-1993-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2019-05, Vol.22 (Suppl 3), p.6295-6304
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918265803
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Blogs
Classification
Classifiers
Computer Communication Networks
Computer Science
Emotions
Entropy
Error analysis
Mathematical models
Maximum entropy
Microblogs
Operating Systems
Predictive control
Principles
Processor Architectures
Public opinion
Sentiment analysis
title Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotional%20component%20analysis%20and%20forecast%20public%20opinion%20on%20micro-blog%20posts%20based%20on%20maximum%20entropy%20model&rft.jtitle=Cluster%20computing&rft.au=Zhang,%20Mingchuan&rft.date=2019-05-01&rft.volume=22&rft.issue=Suppl%203&rft.spage=6295&rft.epage=6304&rft.pages=6295-6304&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-1993-6&rft_dat=%3Cproquest_cross%3E2918265803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265803&rft_id=info:pmid/&rfr_iscdi=true