Convergence of density functional iterative procedures with a Newton-Raphson algorithm
State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We firs...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2007-09, Vol.6 (1-3), p.349-352 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 1-3 |
container_start_page | 349 |
container_title | Journal of computational electronics |
container_volume | 6 |
creator | Jerome, J. W. Sievert, P. R. Ye, L. H. Kim, I. G. Freeman, A. J. |
description | State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density. |
doi_str_mv | 10.1007/s10825-006-0135-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918265138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKs_wFvAc_R9k81m9yjFLygKol5DNpu0W9pNTbIt_fduqacZmGEYHkJuEe4RQD0khIpLBlAyQCEZnpEJSsVZhUKdH31Zswq4vCRXKa0AOPACJ-RnFvqdiwvXW0eDp63rU5cP1A-9zV3ozZp22UWTu52j2xisa4foEt13eUkNfXf7HHr2abbLFHpq1osQx2RzTS68WSd3869T8v389DV7ZfOPl7fZ45xZrkRmHspGGCVrL6FWDotCWjS1B2OVFyVyK0VdK_AgWmta7lTTtKIpsRKyEgWKKbk77Y7XfgeXsl6FIY6vk-Y1VryUKKqxhaeWjSGl6Lzexm5j4kEj6CM-fcKnR3z6iE-j-ANlHmM5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265138</pqid></control><display><type>article</type><title>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Jerome, J. W. ; Sievert, P. R. ; Ye, L. H. ; Kim, I. G. ; Freeman, A. J.</creator><creatorcontrib>Jerome, J. W. ; Sievert, P. R. ; Ye, L. H. ; Kim, I. G. ; Freeman, A. J.</creatorcontrib><description>State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-006-0135-1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Convergence ; Density distribution ; Effectiveness ; First principles ; Iterative methods ; Iterative solution ; Neutral atoms ; Newton-Raphson method ; Thomas-Fermi model</subject><ispartof>Journal of computational electronics, 2007-09, Vol.6 (1-3), p.349-352</ispartof><rights>2006 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</citedby><cites>FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918265138?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,43786,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Jerome, J. W.</creatorcontrib><creatorcontrib>Sievert, P. R.</creatorcontrib><creatorcontrib>Ye, L. H.</creatorcontrib><creatorcontrib>Kim, I. G.</creatorcontrib><creatorcontrib>Freeman, A. J.</creatorcontrib><title>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</title><title>Journal of computational electronics</title><description>State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Density distribution</subject><subject>Effectiveness</subject><subject>First principles</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Neutral atoms</subject><subject>Newton-Raphson method</subject><subject>Thomas-Fermi model</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkE1LAzEYhIMoWKs_wFvAc_R9k81m9yjFLygKol5DNpu0W9pNTbIt_fduqacZmGEYHkJuEe4RQD0khIpLBlAyQCEZnpEJSsVZhUKdH31Zswq4vCRXKa0AOPACJ-RnFvqdiwvXW0eDp63rU5cP1A-9zV3ozZp22UWTu52j2xisa4foEt13eUkNfXf7HHr2abbLFHpq1osQx2RzTS68WSd3869T8v389DV7ZfOPl7fZ45xZrkRmHspGGCVrL6FWDotCWjS1B2OVFyVyK0VdK_AgWmta7lTTtKIpsRKyEgWKKbk77Y7XfgeXsl6FIY6vk-Y1VryUKKqxhaeWjSGl6Lzexm5j4kEj6CM-fcKnR3z6iE-j-ANlHmM5</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Jerome, J. W.</creator><creator>Sievert, P. R.</creator><creator>Ye, L. H.</creator><creator>Kim, I. G.</creator><creator>Freeman, A. J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>200709</creationdate><title>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</title><author>Jerome, J. W. ; Sievert, P. R. ; Ye, L. H. ; Kim, I. G. ; Freeman, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Density distribution</topic><topic>Effectiveness</topic><topic>First principles</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Neutral atoms</topic><topic>Newton-Raphson method</topic><topic>Thomas-Fermi model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerome, J. W.</creatorcontrib><creatorcontrib>Sievert, P. R.</creatorcontrib><creatorcontrib>Ye, L. H.</creatorcontrib><creatorcontrib>Kim, I. G.</creatorcontrib><creatorcontrib>Freeman, A. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerome, J. W.</au><au>Sievert, P. R.</au><au>Ye, L. H.</au><au>Kim, I. G.</au><au>Freeman, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</atitle><jtitle>Journal of computational electronics</jtitle><date>2007-09</date><risdate>2007</risdate><volume>6</volume><issue>1-3</issue><spage>349</spage><epage>352</epage><pages>349-352</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10825-006-0135-1</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2007-09, Vol.6 (1-3), p.349-352 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918265138 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Convergence Density distribution Effectiveness First principles Iterative methods Iterative solution Neutral atoms Newton-Raphson method Thomas-Fermi model |
title | Convergence of density functional iterative procedures with a Newton-Raphson algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20density%20functional%20iterative%20procedures%20with%20a%20Newton-Raphson%20algorithm&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Jerome,%20J.%20W.&rft.date=2007-09&rft.volume=6&rft.issue=1-3&rft.spage=349&rft.epage=352&rft.pages=349-352&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-006-0135-1&rft_dat=%3Cproquest_cross%3E2918265138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265138&rft_id=info:pmid/&rfr_iscdi=true |