Convergence of density functional iterative procedures with a Newton-Raphson algorithm

State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2007-09, Vol.6 (1-3), p.349-352
Hauptverfasser: Jerome, J. W., Sievert, P. R., Ye, L. H., Kim, I. G., Freeman, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 1-3
container_start_page 349
container_title Journal of computational electronics
container_volume 6
creator Jerome, J. W.
Sievert, P. R.
Ye, L. H.
Kim, I. G.
Freeman, A. J.
description State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density.
doi_str_mv 10.1007/s10825-006-0135-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918265138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKs_wFvAc_R9k81m9yjFLygKol5DNpu0W9pNTbIt_fduqacZmGEYHkJuEe4RQD0khIpLBlAyQCEZnpEJSsVZhUKdH31Zswq4vCRXKa0AOPACJ-RnFvqdiwvXW0eDp63rU5cP1A-9zV3ozZp22UWTu52j2xisa4foEt13eUkNfXf7HHr2abbLFHpq1osQx2RzTS68WSd3869T8v389DV7ZfOPl7fZ45xZrkRmHspGGCVrL6FWDotCWjS1B2OVFyVyK0VdK_AgWmta7lTTtKIpsRKyEgWKKbk77Y7XfgeXsl6FIY6vk-Y1VryUKKqxhaeWjSGl6Lzexm5j4kEj6CM-fcKnR3z6iE-j-ANlHmM5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265138</pqid></control><display><type>article</type><title>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Jerome, J. W. ; Sievert, P. R. ; Ye, L. H. ; Kim, I. G. ; Freeman, A. J.</creator><creatorcontrib>Jerome, J. W. ; Sievert, P. R. ; Ye, L. H. ; Kim, I. G. ; Freeman, A. J.</creatorcontrib><description>State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-006-0135-1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Convergence ; Density distribution ; Effectiveness ; First principles ; Iterative methods ; Iterative solution ; Neutral atoms ; Newton-Raphson method ; Thomas-Fermi model</subject><ispartof>Journal of computational electronics, 2007-09, Vol.6 (1-3), p.349-352</ispartof><rights>2006 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</citedby><cites>FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918265138?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,43786,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Jerome, J. W.</creatorcontrib><creatorcontrib>Sievert, P. R.</creatorcontrib><creatorcontrib>Ye, L. H.</creatorcontrib><creatorcontrib>Kim, I. G.</creatorcontrib><creatorcontrib>Freeman, A. J.</creatorcontrib><title>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</title><title>Journal of computational electronics</title><description>State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Density distribution</subject><subject>Effectiveness</subject><subject>First principles</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Neutral atoms</subject><subject>Newton-Raphson method</subject><subject>Thomas-Fermi model</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkE1LAzEYhIMoWKs_wFvAc_R9k81m9yjFLygKol5DNpu0W9pNTbIt_fduqacZmGEYHkJuEe4RQD0khIpLBlAyQCEZnpEJSsVZhUKdH31Zswq4vCRXKa0AOPACJ-RnFvqdiwvXW0eDp63rU5cP1A-9zV3ozZp22UWTu52j2xisa4foEt13eUkNfXf7HHr2abbLFHpq1osQx2RzTS68WSd3869T8v389DV7ZfOPl7fZ45xZrkRmHspGGCVrL6FWDotCWjS1B2OVFyVyK0VdK_AgWmta7lTTtKIpsRKyEgWKKbk77Y7XfgeXsl6FIY6vk-Y1VryUKKqxhaeWjSGl6Lzexm5j4kEj6CM-fcKnR3z6iE-j-ANlHmM5</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Jerome, J. W.</creator><creator>Sievert, P. R.</creator><creator>Ye, L. H.</creator><creator>Kim, I. G.</creator><creator>Freeman, A. J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>200709</creationdate><title>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</title><author>Jerome, J. W. ; Sievert, P. R. ; Ye, L. H. ; Kim, I. G. ; Freeman, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f06b3a759f5097e1445c1a9f0ac7f3612c539970f03dcad2e7bbd3b6183583413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Density distribution</topic><topic>Effectiveness</topic><topic>First principles</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Neutral atoms</topic><topic>Newton-Raphson method</topic><topic>Thomas-Fermi model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerome, J. W.</creatorcontrib><creatorcontrib>Sievert, P. R.</creatorcontrib><creatorcontrib>Ye, L. H.</creatorcontrib><creatorcontrib>Kim, I. G.</creatorcontrib><creatorcontrib>Freeman, A. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerome, J. W.</au><au>Sievert, P. R.</au><au>Ye, L. H.</au><au>Kim, I. G.</au><au>Freeman, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of density functional iterative procedures with a Newton-Raphson algorithm</atitle><jtitle>Journal of computational electronics</jtitle><date>2007-09</date><risdate>2007</risdate><volume>6</volume><issue>1-3</issue><spage>349</spage><epage>352</epage><pages>349-352</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>State of the art first-principles calculations of electronic structures aim at finding the ground state electronic density distribution. The performance of such methodologies is determined by the effectiveness of the iterative solution of the nonlinear density functional Kohn-Sham equations. We first outline a solution strategy based on the Newton-Raphson method. A form of the algorithm is then applied to the simplest and earliest density functional model, i.e., the atomic Thomas-Fermi model. For the neutral atom, we demonstrate the effectiveness of a charge conserving Newton-Raphson iterative method for the computation, which is independent of the starting guess; it converges rapidly, even for a randomly selected normalized starting density.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10825-006-0135-1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2007-09, Vol.6 (1-3), p.349-352
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918265138
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Convergence
Density distribution
Effectiveness
First principles
Iterative methods
Iterative solution
Neutral atoms
Newton-Raphson method
Thomas-Fermi model
title Convergence of density functional iterative procedures with a Newton-Raphson algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20density%20functional%20iterative%20procedures%20with%20a%20Newton-Raphson%20algorithm&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Jerome,%20J.%20W.&rft.date=2007-09&rft.volume=6&rft.issue=1-3&rft.spage=349&rft.epage=352&rft.pages=349-352&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-006-0135-1&rft_dat=%3Cproquest_cross%3E2918265138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265138&rft_id=info:pmid/&rfr_iscdi=true