Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification
Aiming at the difficult problem of plant leaf recognition on the large-scale database, a two-stage local similarity based classification learning (LSCL) method is proposed by combining local mean-based clustering (LMC) method and local sparse representation based classification (SRC) (LWSRC). In the...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2017-06, Vol.20 (2), p.1517-1525 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1525 |
---|---|
container_issue | 2 |
container_start_page | 1517 |
container_title | Cluster computing |
container_volume | 20 |
creator | Zhang, Shanwen Wang, Harry Huang, Wenzhun |
description | Aiming at the difficult problem of plant leaf recognition on the large-scale database, a two-stage local similarity based classification learning (LSCL) method is proposed by combining local mean-based clustering (LMC) method and local sparse representation based classification (SRC) (LWSRC). In the first stage, LMC is applied to coarsely classifying the test sample.
k
nearest neighbors of the test sample, as a neighbor subset, is selected from each training class, then the local geometric center of each class is calculated.
S
candidate neighbor subsets of the test sample are determined with the first
S
smallest distances between the test sample and each local geometric center. In the second stage, LWSRC is proposed to approximately represent the test sample through a linear weighted sum of all
k
×
S
samples of the
S
candidate neighbor subsets. Experimental results on the leaf image database demonstrate that the proposed method not only has a high accuracy and low time cost, but also can be clearly interpreted. |
doi_str_mv | 10.1007/s10586-017-0859-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918265080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e325799dc0e4da143b9fe435158a99d10cd4670f32e8a08c2ab2b000ab2c49ea3</originalsourceid><addsrcrecordid>eNp1kE1PAyEQhonRxFr9Ad5IPKN8LIU9msavxMRLjUfCsrOVZsuuQGP676VdE0-eBoZ53gkPQteM3jJK1V1iVOoFoUwRqmVN1AmaMakEUbISp-UsyqvSUp2ji5Q2lNJa8XqGwup7ICnbNeCxtyHjNILzkHAEN6yDz34IuNnjfnC2x1uwAbt-lzJEH9bYhhZ_gF9_ZmgLaWOCAo4REoRsj6zrbUq-8-54vURnne0TXP3WOXp_fFgtn8nr29PL8v6VOKF5JiC4VHXdOgpVa1klmrqDSkgmtS1tRl1bLRTtBAdtqXbcNrwpfyrFVTVYMUc3U-4Yh68dpGw2wy6GstLwmmm-kFTTMsWmKReHlCJ0Zox-a-PeMGoOWs2k1RSt5qDVqMLwiUnjQQHEv-T_oR-3AXzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265080</pqid></control><display><type>article</type><title>Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Zhang, Shanwen ; Wang, Harry ; Huang, Wenzhun</creator><creatorcontrib>Zhang, Shanwen ; Wang, Harry ; Huang, Wenzhun</creatorcontrib><description>Aiming at the difficult problem of plant leaf recognition on the large-scale database, a two-stage local similarity based classification learning (LSCL) method is proposed by combining local mean-based clustering (LMC) method and local sparse representation based classification (SRC) (LWSRC). In the first stage, LMC is applied to coarsely classifying the test sample.
k
nearest neighbors of the test sample, as a neighbor subset, is selected from each training class, then the local geometric center of each class is calculated.
S
candidate neighbor subsets of the test sample are determined with the first
S
smallest distances between the test sample and each local geometric center. In the second stage, LWSRC is proposed to approximately represent the test sample through a linear weighted sum of all
k
×
S
samples of the
S
candidate neighbor subsets. Experimental results on the leaf image database demonstrate that the proposed method not only has a high accuracy and low time cost, but also can be clearly interpreted.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-017-0859-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; Cluster analysis ; Clustering ; Computer Communication Networks ; Computer Science ; Dictionaries ; Discriminant analysis ; Flowers & plants ; Leaves ; Methods ; Operating Systems ; Pattern recognition ; Plants (botany) ; Processor Architectures ; Recognition ; Representations ; Sparsity</subject><ispartof>Cluster computing, 2017-06, Vol.20 (2), p.1517-1525</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e325799dc0e4da143b9fe435158a99d10cd4670f32e8a08c2ab2b000ab2c49ea3</citedby><cites>FETCH-LOGICAL-c382t-e325799dc0e4da143b9fe435158a99d10cd4670f32e8a08c2ab2b000ab2c49ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-017-0859-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918265080?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Shanwen</creatorcontrib><creatorcontrib>Wang, Harry</creatorcontrib><creatorcontrib>Huang, Wenzhun</creatorcontrib><title>Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Aiming at the difficult problem of plant leaf recognition on the large-scale database, a two-stage local similarity based classification learning (LSCL) method is proposed by combining local mean-based clustering (LMC) method and local sparse representation based classification (SRC) (LWSRC). In the first stage, LMC is applied to coarsely classifying the test sample.
k
nearest neighbors of the test sample, as a neighbor subset, is selected from each training class, then the local geometric center of each class is calculated.
S
candidate neighbor subsets of the test sample are determined with the first
S
smallest distances between the test sample and each local geometric center. In the second stage, LWSRC is proposed to approximately represent the test sample through a linear weighted sum of all
k
×
S
samples of the
S
candidate neighbor subsets. Experimental results on the leaf image database demonstrate that the proposed method not only has a high accuracy and low time cost, but also can be clearly interpreted.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Dictionaries</subject><subject>Discriminant analysis</subject><subject>Flowers & plants</subject><subject>Leaves</subject><subject>Methods</subject><subject>Operating Systems</subject><subject>Pattern recognition</subject><subject>Plants (botany)</subject><subject>Processor Architectures</subject><subject>Recognition</subject><subject>Representations</subject><subject>Sparsity</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1PAyEQhonRxFr9Ad5IPKN8LIU9msavxMRLjUfCsrOVZsuuQGP676VdE0-eBoZ53gkPQteM3jJK1V1iVOoFoUwRqmVN1AmaMakEUbISp-UsyqvSUp2ji5Q2lNJa8XqGwup7ICnbNeCxtyHjNILzkHAEN6yDz34IuNnjfnC2x1uwAbt-lzJEH9bYhhZ_gF9_ZmgLaWOCAo4REoRsj6zrbUq-8-54vURnne0TXP3WOXp_fFgtn8nr29PL8v6VOKF5JiC4VHXdOgpVa1klmrqDSkgmtS1tRl1bLRTtBAdtqXbcNrwpfyrFVTVYMUc3U-4Yh68dpGw2wy6GstLwmmm-kFTTMsWmKReHlCJ0Zox-a-PeMGoOWs2k1RSt5qDVqMLwiUnjQQHEv-T_oR-3AXzt</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Zhang, Shanwen</creator><creator>Wang, Harry</creator><creator>Huang, Wenzhun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170601</creationdate><title>Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification</title><author>Zhang, Shanwen ; Wang, Harry ; Huang, Wenzhun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e325799dc0e4da143b9fe435158a99d10cd4670f32e8a08c2ab2b000ab2c49ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Dictionaries</topic><topic>Discriminant analysis</topic><topic>Flowers & plants</topic><topic>Leaves</topic><topic>Methods</topic><topic>Operating Systems</topic><topic>Pattern recognition</topic><topic>Plants (botany)</topic><topic>Processor Architectures</topic><topic>Recognition</topic><topic>Representations</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shanwen</creatorcontrib><creatorcontrib>Wang, Harry</creatorcontrib><creatorcontrib>Huang, Wenzhun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shanwen</au><au>Wang, Harry</au><au>Huang, Wenzhun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>20</volume><issue>2</issue><spage>1517</spage><epage>1525</epage><pages>1517-1525</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Aiming at the difficult problem of plant leaf recognition on the large-scale database, a two-stage local similarity based classification learning (LSCL) method is proposed by combining local mean-based clustering (LMC) method and local sparse representation based classification (SRC) (LWSRC). In the first stage, LMC is applied to coarsely classifying the test sample.
k
nearest neighbors of the test sample, as a neighbor subset, is selected from each training class, then the local geometric center of each class is calculated.
S
candidate neighbor subsets of the test sample are determined with the first
S
smallest distances between the test sample and each local geometric center. In the second stage, LWSRC is proposed to approximately represent the test sample through a linear weighted sum of all
k
×
S
samples of the
S
candidate neighbor subsets. Experimental results on the leaf image database demonstrate that the proposed method not only has a high accuracy and low time cost, but also can be clearly interpreted.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-017-0859-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2017-06, Vol.20 (2), p.1517-1525 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918265080 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Artificial intelligence Classification Cluster analysis Clustering Computer Communication Networks Computer Science Dictionaries Discriminant analysis Flowers & plants Leaves Methods Operating Systems Pattern recognition Plants (botany) Processor Architectures Recognition Representations Sparsity |
title | Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-stage%20plant%20species%20recognition%20by%20local%20mean%20clustering%20and%20Weighted%20sparse%20representation%20classification&rft.jtitle=Cluster%20computing&rft.au=Zhang,%20Shanwen&rft.date=2017-06-01&rft.volume=20&rft.issue=2&rft.spage=1517&rft.epage=1525&rft.pages=1517-1525&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-017-0859-7&rft_dat=%3Cproquest_cross%3E2918265080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265080&rft_id=info:pmid/&rfr_iscdi=true |