A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs
Wireless sensor networks (WSNs) have drawn much research attention in recent years due to the superior performance in multiple applications, such as military and industrial monitoring, smart home, disaster restoration etc. In such applications, massive sensor nodes are randomly deployed and they rem...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2019-01, Vol.22 (Suppl 1), p.1787-1795 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1795 |
---|---|
container_issue | Suppl 1 |
container_start_page | 1787 |
container_title | Cluster computing |
container_volume | 22 |
creator | Wang, Jin Ju, Chunwei Kim, Hye-jin Sherratt, R. Simon Lee, Sungyoung |
description | Wireless sensor networks (WSNs) have drawn much research attention in recent years due to the superior performance in multiple applications, such as military and industrial monitoring, smart home, disaster restoration etc. In such applications, massive sensor nodes are randomly deployed and they remain static after the deployment, to fully cover the target sensing area. This will usually cause coverage redundancy or coverage hole problem. In order to effectively deploy sensors to cover whole area, we present a novel node deployment algorithm based on mobile sensors. First, sensor nodes are randomly deployed in target area, and they remain static or switch to the sleep mode after deployment. Second, we partition the network into grids and calculate the coverage rate of each grid. We select grids with lower coverage rate as candidate grids. Finally, we awake mobile sensors from sleep mode to fix coverage hole, particle swarm optimization (PSO) algorithm is used to calculate moving position of mobile sensors. Simulation results show that our algorithm can effectively improve the coverage rate of WSNs. |
doi_str_mv | 10.1007/s10586-017-1586-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918257280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918257280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-285aea6825cf7efeca57f2848de6348ed4f171e1ad8f374cd8d1c97cfb8db5583</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WkbTbpcVn8B4seVDxJSNPJbpZtUzNdRT-9WSp48jTDvN97A4-Qc84uOWPyCjkTapYxLjO-X6oDMuFCFpkUZXGY9iIdpRLymJwgbhhjlcyrCXmb0zbUfgvUIHocoKE2fEA0K6DrkM69GezadyuKdg0t0NpgYkKXhDh4mwj8NLGloR9867_N4JPmQqSvTw94So6c2SKc_c4pebm5fl7cZcvH2_vFfJnZQlRDlithwMxULqyT4MAaIV2uStXArCgVNKXjkgM3jXKFLG2jGm4raV2tmloIVUzJxZjbx_C-Axz0Juxil17qvOIpV-aKJYqPlI0BMYLTffStiV-aM71vUY8t6tSi3reoq-TJRw8mtltB_Ev-3_QDoxJ2ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918257280</pqid></control><display><type>article</type><title>A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Wang, Jin ; Ju, Chunwei ; Kim, Hye-jin ; Sherratt, R. Simon ; Lee, Sungyoung</creator><creatorcontrib>Wang, Jin ; Ju, Chunwei ; Kim, Hye-jin ; Sherratt, R. Simon ; Lee, Sungyoung</creatorcontrib><description>Wireless sensor networks (WSNs) have drawn much research attention in recent years due to the superior performance in multiple applications, such as military and industrial monitoring, smart home, disaster restoration etc. In such applications, massive sensor nodes are randomly deployed and they remain static after the deployment, to fully cover the target sensing area. This will usually cause coverage redundancy or coverage hole problem. In order to effectively deploy sensors to cover whole area, we present a novel node deployment algorithm based on mobile sensors. First, sensor nodes are randomly deployed in target area, and they remain static or switch to the sleep mode after deployment. Second, we partition the network into grids and calculate the coverage rate of each grid. We select grids with lower coverage rate as candidate grids. Finally, we awake mobile sensors from sleep mode to fix coverage hole, particle swarm optimization (PSO) algorithm is used to calculate moving position of mobile sensors. Simulation results show that our algorithm can effectively improve the coverage rate of WSNs.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-017-1586-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Collaboration ; Computer Communication Networks ; Computer Science ; Data collection ; Energy efficiency ; Mathematical analysis ; Military applications ; Nodes ; Operating Systems ; Optimization ; Particle swarm optimization ; Position sensing ; Processor Architectures ; Redundancy ; Sensors ; Simulation ; Smart buildings ; Wireless sensor networks</subject><ispartof>Cluster computing, 2019-01, Vol.22 (Suppl 1), p.1787-1795</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-285aea6825cf7efeca57f2848de6348ed4f171e1ad8f374cd8d1c97cfb8db5583</citedby><cites>FETCH-LOGICAL-c359t-285aea6825cf7efeca57f2848de6348ed4f171e1ad8f374cd8d1c97cfb8db5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-017-1586-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918257280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Ju, Chunwei</creatorcontrib><creatorcontrib>Kim, Hye-jin</creatorcontrib><creatorcontrib>Sherratt, R. Simon</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><title>A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Wireless sensor networks (WSNs) have drawn much research attention in recent years due to the superior performance in multiple applications, such as military and industrial monitoring, smart home, disaster restoration etc. In such applications, massive sensor nodes are randomly deployed and they remain static after the deployment, to fully cover the target sensing area. This will usually cause coverage redundancy or coverage hole problem. In order to effectively deploy sensors to cover whole area, we present a novel node deployment algorithm based on mobile sensors. First, sensor nodes are randomly deployed in target area, and they remain static or switch to the sleep mode after deployment. Second, we partition the network into grids and calculate the coverage rate of each grid. We select grids with lower coverage rate as candidate grids. Finally, we awake mobile sensors from sleep mode to fix coverage hole, particle swarm optimization (PSO) algorithm is used to calculate moving position of mobile sensors. Simulation results show that our algorithm can effectively improve the coverage rate of WSNs.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data collection</subject><subject>Energy efficiency</subject><subject>Mathematical analysis</subject><subject>Military applications</subject><subject>Nodes</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Position sensing</subject><subject>Processor Architectures</subject><subject>Redundancy</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Smart buildings</subject><subject>Wireless sensor networks</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WkbTbpcVn8B4seVDxJSNPJbpZtUzNdRT-9WSp48jTDvN97A4-Qc84uOWPyCjkTapYxLjO-X6oDMuFCFpkUZXGY9iIdpRLymJwgbhhjlcyrCXmb0zbUfgvUIHocoKE2fEA0K6DrkM69GezadyuKdg0t0NpgYkKXhDh4mwj8NLGloR9867_N4JPmQqSvTw94So6c2SKc_c4pebm5fl7cZcvH2_vFfJnZQlRDlithwMxULqyT4MAaIV2uStXArCgVNKXjkgM3jXKFLG2jGm4raV2tmloIVUzJxZjbx_C-Axz0Juxil17qvOIpV-aKJYqPlI0BMYLTffStiV-aM71vUY8t6tSi3reoq-TJRw8mtltB_Ev-3_QDoxJ2ZA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Jin</creator><creator>Ju, Chunwei</creator><creator>Kim, Hye-jin</creator><creator>Sherratt, R. Simon</creator><creator>Lee, Sungyoung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190101</creationdate><title>A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs</title><author>Wang, Jin ; Ju, Chunwei ; Kim, Hye-jin ; Sherratt, R. Simon ; Lee, Sungyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-285aea6825cf7efeca57f2848de6348ed4f171e1ad8f374cd8d1c97cfb8db5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data collection</topic><topic>Energy efficiency</topic><topic>Mathematical analysis</topic><topic>Military applications</topic><topic>Nodes</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Position sensing</topic><topic>Processor Architectures</topic><topic>Redundancy</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Smart buildings</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Ju, Chunwei</creatorcontrib><creatorcontrib>Kim, Hye-jin</creatorcontrib><creatorcontrib>Sherratt, R. Simon</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin</au><au>Ju, Chunwei</au><au>Kim, Hye-jin</au><au>Sherratt, R. Simon</au><au>Lee, Sungyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 1</issue><spage>1787</spage><epage>1795</epage><pages>1787-1795</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Wireless sensor networks (WSNs) have drawn much research attention in recent years due to the superior performance in multiple applications, such as military and industrial monitoring, smart home, disaster restoration etc. In such applications, massive sensor nodes are randomly deployed and they remain static after the deployment, to fully cover the target sensing area. This will usually cause coverage redundancy or coverage hole problem. In order to effectively deploy sensors to cover whole area, we present a novel node deployment algorithm based on mobile sensors. First, sensor nodes are randomly deployed in target area, and they remain static or switch to the sleep mode after deployment. Second, we partition the network into grids and calculate the coverage rate of each grid. We select grids with lower coverage rate as candidate grids. Finally, we awake mobile sensors from sleep mode to fix coverage hole, particle swarm optimization (PSO) algorithm is used to calculate moving position of mobile sensors. Simulation results show that our algorithm can effectively improve the coverage rate of WSNs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-017-1586-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2019-01, Vol.22 (Suppl 1), p.1787-1795 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918257280 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Collaboration Computer Communication Networks Computer Science Data collection Energy efficiency Mathematical analysis Military applications Nodes Operating Systems Optimization Particle swarm optimization Position sensing Processor Architectures Redundancy Sensors Simulation Smart buildings Wireless sensor networks |
title | A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mobile%20assisted%20coverage%20hole%20patching%20scheme%20based%20on%20particle%20swarm%20optimization%20for%20WSNs&rft.jtitle=Cluster%20computing&rft.au=Wang,%20Jin&rft.date=2019-01-01&rft.volume=22&rft.issue=Suppl%201&rft.spage=1787&rft.epage=1795&rft.pages=1787-1795&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-017-1586-9&rft_dat=%3Cproquest_cross%3E2918257280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918257280&rft_id=info:pmid/&rfr_iscdi=true |