Token Sliding on Graphs of Girth Five
In the Token Sliding problem we are given a graph G and two independent sets I s and I t in G of size k ≥ 1 . The goal is to decide whether there exists a sequence ⟨ I 1 , I 2 , … , I ℓ ⟩ of independent sets such that for all j ∈ { 1 , … , ℓ - 1 } the set I j is an independent set of size k , I 1 =...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2024-02, Vol.86 (2), p.638-655 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 655 |
---|---|
container_issue | 2 |
container_start_page | 638 |
container_title | Algorithmica |
container_volume | 86 |
creator | Bartier, Valentin Bousquet, Nicolas Hanna, Jihad Mouawad, Amer E. Siebertz, Sebastian |
description | In the
Token Sliding
problem we are given a graph
G
and two independent sets
I
s
and
I
t
in
G
of size
k
≥
1
. The goal is to decide whether there exists a sequence
⟨
I
1
,
I
2
,
…
,
I
ℓ
⟩
of independent sets such that for all
j
∈
{
1
,
…
,
ℓ
-
1
}
the set
I
j
is an independent set of size
k
,
I
1
=
I
s
,
I
ℓ
=
I
t
and
I
j
▵
I
j
+
1
=
{
u
,
v
}
∈
E
(
G
)
. Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms
I
s
into
I
t
where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of
Token Sliding
parameterized by
k
. As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021.
https://doi.org/10.1007/s00453-021-00848-1
), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant
p
≥
5
such that the problem becomes fixed-parameter tractable on graphs of girth at least
p
. We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of
Token Sliding
parameterized by the number of tokens based on the girth of the input graph. |
doi_str_mv | 10.1007/s00453-023-01181-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2918252476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918252476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-bea52fed25b1916580d2cc733acdb6f9a5427f1e581068906be7b5205cdf97363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCePCwOpNsvo6l2FYoeLCeQ3Y3abfWTU3agv_erSt68zAMDM_7MjyEXCPcI4B8SAAFZznQbhAV5vyEDLBgNAde4CkZAEqVFwLlOblIaQ2AVGoxILeL8Oba7GXT1E27zEKbTaPdrlIWfDZt4m6VTZqDuyRn3m6Su_rZQ_I6eVyMZ_n8efo0Hs3zihVql5fOcupdTXmJGgVXUNOqkozZqi6F15YXVHp0XCEIpUGUTpacAq9qryUTbEju-t6V3ZhtbN5t_DTBNmY2mpvjDZiiWnJ9wI696dltDB97l3ZmHfax7d4zVKOinBby2Eh7qoohpej8by2COaozvTrTqTPf6gzvQqwPpQ5uly7-Vf-T-gK3-W14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918252476</pqid></control><display><type>article</type><title>Token Sliding on Graphs of Girth Five</title><source>SpringerLink Journals</source><creator>Bartier, Valentin ; Bousquet, Nicolas ; Hanna, Jihad ; Mouawad, Amer E. ; Siebertz, Sebastian</creator><creatorcontrib>Bartier, Valentin ; Bousquet, Nicolas ; Hanna, Jihad ; Mouawad, Amer E. ; Siebertz, Sebastian</creatorcontrib><description>In the
Token Sliding
problem we are given a graph
G
and two independent sets
I
s
and
I
t
in
G
of size
k
≥
1
. The goal is to decide whether there exists a sequence
⟨
I
1
,
I
2
,
…
,
I
ℓ
⟩
of independent sets such that for all
j
∈
{
1
,
…
,
ℓ
-
1
}
the set
I
j
is an independent set of size
k
,
I
1
=
I
s
,
I
ℓ
=
I
t
and
I
j
▵
I
j
+
1
=
{
u
,
v
}
∈
E
(
G
)
. Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms
I
s
into
I
t
where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of
Token Sliding
parameterized by
k
. As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021.
https://doi.org/10.1007/s00453-021-00848-1
), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant
p
≥
5
such that the problem becomes fixed-parameter tractable on graphs of girth at least
p
. We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of
Token Sliding
parameterized by the number of tokens based on the girth of the input graph.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-023-01181-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Apexes ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Algorithms ; Data Structures and Information Theory ; Graph theory ; Graphs ; Mathematics of Computing ; Parameterization ; Parameters ; Questions ; Sliding ; Theory of Computation</subject><ispartof>Algorithmica, 2024-02, Vol.86 (2), p.638-655</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-bea52fed25b1916580d2cc733acdb6f9a5427f1e581068906be7b5205cdf97363</cites><orcidid>0000-0003-0170-0503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-023-01181-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-023-01181-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>309,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03829759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartier, Valentin</creatorcontrib><creatorcontrib>Bousquet, Nicolas</creatorcontrib><creatorcontrib>Hanna, Jihad</creatorcontrib><creatorcontrib>Mouawad, Amer E.</creatorcontrib><creatorcontrib>Siebertz, Sebastian</creatorcontrib><title>Token Sliding on Graphs of Girth Five</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>In the
Token Sliding
problem we are given a graph
G
and two independent sets
I
s
and
I
t
in
G
of size
k
≥
1
. The goal is to decide whether there exists a sequence
⟨
I
1
,
I
2
,
…
,
I
ℓ
⟩
of independent sets such that for all
j
∈
{
1
,
…
,
ℓ
-
1
}
the set
I
j
is an independent set of size
k
,
I
1
=
I
s
,
I
ℓ
=
I
t
and
I
j
▵
I
j
+
1
=
{
u
,
v
}
∈
E
(
G
)
. Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms
I
s
into
I
t
where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of
Token Sliding
parameterized by
k
. As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021.
https://doi.org/10.1007/s00453-021-00848-1
), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant
p
≥
5
such that the problem becomes fixed-parameter tractable on graphs of girth at least
p
. We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of
Token Sliding
parameterized by the number of tokens based on the girth of the input graph.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics of Computing</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Questions</subject><subject>Sliding</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCePCwOpNsvo6l2FYoeLCeQ3Y3abfWTU3agv_erSt68zAMDM_7MjyEXCPcI4B8SAAFZznQbhAV5vyEDLBgNAde4CkZAEqVFwLlOblIaQ2AVGoxILeL8Oba7GXT1E27zEKbTaPdrlIWfDZt4m6VTZqDuyRn3m6Su_rZQ_I6eVyMZ_n8efo0Hs3zihVql5fOcupdTXmJGgVXUNOqkozZqi6F15YXVHp0XCEIpUGUTpacAq9qryUTbEju-t6V3ZhtbN5t_DTBNmY2mpvjDZiiWnJ9wI696dltDB97l3ZmHfax7d4zVKOinBby2Eh7qoohpej8by2COaozvTrTqTPf6gzvQqwPpQ5uly7-Vf-T-gK3-W14</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bartier, Valentin</creator><creator>Bousquet, Nicolas</creator><creator>Hanna, Jihad</creator><creator>Mouawad, Amer E.</creator><creator>Siebertz, Sebastian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid></search><sort><creationdate>20240201</creationdate><title>Token Sliding on Graphs of Girth Five</title><author>Bartier, Valentin ; Bousquet, Nicolas ; Hanna, Jihad ; Mouawad, Amer E. ; Siebertz, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-bea52fed25b1916580d2cc733acdb6f9a5427f1e581068906be7b5205cdf97363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics of Computing</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Questions</topic><topic>Sliding</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartier, Valentin</creatorcontrib><creatorcontrib>Bousquet, Nicolas</creatorcontrib><creatorcontrib>Hanna, Jihad</creatorcontrib><creatorcontrib>Mouawad, Amer E.</creatorcontrib><creatorcontrib>Siebertz, Sebastian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartier, Valentin</au><au>Bousquet, Nicolas</au><au>Hanna, Jihad</au><au>Mouawad, Amer E.</au><au>Siebertz, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Token Sliding on Graphs of Girth Five</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>86</volume><issue>2</issue><spage>638</spage><epage>655</epage><pages>638-655</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>In the
Token Sliding
problem we are given a graph
G
and two independent sets
I
s
and
I
t
in
G
of size
k
≥
1
. The goal is to decide whether there exists a sequence
⟨
I
1
,
I
2
,
…
,
I
ℓ
⟩
of independent sets such that for all
j
∈
{
1
,
…
,
ℓ
-
1
}
the set
I
j
is an independent set of size
k
,
I
1
=
I
s
,
I
ℓ
=
I
t
and
I
j
▵
I
j
+
1
=
{
u
,
v
}
∈
E
(
G
)
. Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms
I
s
into
I
t
where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of
Token Sliding
parameterized by
k
. As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021.
https://doi.org/10.1007/s00453-021-00848-1
), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant
p
≥
5
such that the problem becomes fixed-parameter tractable on graphs of girth at least
p
. We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of
Token Sliding
parameterized by the number of tokens based on the girth of the input graph.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-023-01181-5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2024-02, Vol.86 (2), p.638-655 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_proquest_journals_2918252476 |
source | SpringerLink Journals |
subjects | Algorithm Analysis and Problem Complexity Algorithms Apexes Computer Science Computer Systems Organization and Communication Networks Data Structures and Algorithms Data Structures and Information Theory Graph theory Graphs Mathematics of Computing Parameterization Parameters Questions Sliding Theory of Computation |
title | Token Sliding on Graphs of Girth Five |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Token%20Sliding%20on%20Graphs%20of%20Girth%20Five&rft.jtitle=Algorithmica&rft.au=Bartier,%20Valentin&rft.date=2024-02-01&rft.volume=86&rft.issue=2&rft.spage=638&rft.epage=655&rft.pages=638-655&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-023-01181-5&rft_dat=%3Cproquest_hal_p%3E2918252476%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918252476&rft_id=info:pmid/&rfr_iscdi=true |