Token Sliding on Graphs of Girth Five

In the Token Sliding problem we are given a graph G and two independent sets I s and I t in G of size k ≥ 1 . The goal is to decide whether there exists a sequence ⟨ I 1 , I 2 , … , I ℓ ⟩ of independent sets such that for all j ∈ { 1 , … , ℓ - 1 } the set I j is an independent set of size  k , I 1 =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2024-02, Vol.86 (2), p.638-655
Hauptverfasser: Bartier, Valentin, Bousquet, Nicolas, Hanna, Jihad, Mouawad, Amer E., Siebertz, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue 2
container_start_page 638
container_title Algorithmica
container_volume 86
creator Bartier, Valentin
Bousquet, Nicolas
Hanna, Jihad
Mouawad, Amer E.
Siebertz, Sebastian
description In the Token Sliding problem we are given a graph G and two independent sets I s and I t in G of size k ≥ 1 . The goal is to decide whether there exists a sequence ⟨ I 1 , I 2 , … , I ℓ ⟩ of independent sets such that for all j ∈ { 1 , … , ℓ - 1 } the set I j is an independent set of size  k , I 1 = I s , I ℓ = I t and I j ▵ I j + 1 = { u , v } ∈ E ( G ) . Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms I s into I t where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of Token Sliding parameterized by k . As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021. https://doi.org/10.1007/s00453-021-00848-1 ), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant p ≥ 5 such that the problem becomes fixed-parameter tractable on graphs of girth at least p . We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of Token Sliding parameterized by the number of tokens based on the girth of the input graph.
doi_str_mv 10.1007/s00453-023-01181-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2918252476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918252476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-bea52fed25b1916580d2cc733acdb6f9a5427f1e581068906be7b5205cdf97363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCePCwOpNsvo6l2FYoeLCeQ3Y3abfWTU3agv_erSt68zAMDM_7MjyEXCPcI4B8SAAFZznQbhAV5vyEDLBgNAde4CkZAEqVFwLlOblIaQ2AVGoxILeL8Oba7GXT1E27zEKbTaPdrlIWfDZt4m6VTZqDuyRn3m6Su_rZQ_I6eVyMZ_n8efo0Hs3zihVql5fOcupdTXmJGgVXUNOqkozZqi6F15YXVHp0XCEIpUGUTpacAq9qryUTbEju-t6V3ZhtbN5t_DTBNmY2mpvjDZiiWnJ9wI696dltDB97l3ZmHfax7d4zVKOinBby2Eh7qoohpej8by2COaozvTrTqTPf6gzvQqwPpQ5uly7-Vf-T-gK3-W14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918252476</pqid></control><display><type>article</type><title>Token Sliding on Graphs of Girth Five</title><source>SpringerLink Journals</source><creator>Bartier, Valentin ; Bousquet, Nicolas ; Hanna, Jihad ; Mouawad, Amer E. ; Siebertz, Sebastian</creator><creatorcontrib>Bartier, Valentin ; Bousquet, Nicolas ; Hanna, Jihad ; Mouawad, Amer E. ; Siebertz, Sebastian</creatorcontrib><description>In the Token Sliding problem we are given a graph G and two independent sets I s and I t in G of size k ≥ 1 . The goal is to decide whether there exists a sequence ⟨ I 1 , I 2 , … , I ℓ ⟩ of independent sets such that for all j ∈ { 1 , … , ℓ - 1 } the set I j is an independent set of size  k , I 1 = I s , I ℓ = I t and I j ▵ I j + 1 = { u , v } ∈ E ( G ) . Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms I s into I t where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of Token Sliding parameterized by k . As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021. https://doi.org/10.1007/s00453-021-00848-1 ), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant p ≥ 5 such that the problem becomes fixed-parameter tractable on graphs of girth at least p . We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of Token Sliding parameterized by the number of tokens based on the girth of the input graph.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-023-01181-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Apexes ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Algorithms ; Data Structures and Information Theory ; Graph theory ; Graphs ; Mathematics of Computing ; Parameterization ; Parameters ; Questions ; Sliding ; Theory of Computation</subject><ispartof>Algorithmica, 2024-02, Vol.86 (2), p.638-655</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-bea52fed25b1916580d2cc733acdb6f9a5427f1e581068906be7b5205cdf97363</cites><orcidid>0000-0003-0170-0503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-023-01181-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-023-01181-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>309,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03829759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartier, Valentin</creatorcontrib><creatorcontrib>Bousquet, Nicolas</creatorcontrib><creatorcontrib>Hanna, Jihad</creatorcontrib><creatorcontrib>Mouawad, Amer E.</creatorcontrib><creatorcontrib>Siebertz, Sebastian</creatorcontrib><title>Token Sliding on Graphs of Girth Five</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>In the Token Sliding problem we are given a graph G and two independent sets I s and I t in G of size k ≥ 1 . The goal is to decide whether there exists a sequence ⟨ I 1 , I 2 , … , I ℓ ⟩ of independent sets such that for all j ∈ { 1 , … , ℓ - 1 } the set I j is an independent set of size  k , I 1 = I s , I ℓ = I t and I j ▵ I j + 1 = { u , v } ∈ E ( G ) . Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms I s into I t where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of Token Sliding parameterized by k . As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021. https://doi.org/10.1007/s00453-021-00848-1 ), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant p ≥ 5 such that the problem becomes fixed-parameter tractable on graphs of girth at least p . We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of Token Sliding parameterized by the number of tokens based on the girth of the input graph.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics of Computing</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Questions</subject><subject>Sliding</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCePCwOpNsvo6l2FYoeLCeQ3Y3abfWTU3agv_erSt68zAMDM_7MjyEXCPcI4B8SAAFZznQbhAV5vyEDLBgNAde4CkZAEqVFwLlOblIaQ2AVGoxILeL8Oba7GXT1E27zEKbTaPdrlIWfDZt4m6VTZqDuyRn3m6Su_rZQ_I6eVyMZ_n8efo0Hs3zihVql5fOcupdTXmJGgVXUNOqkozZqi6F15YXVHp0XCEIpUGUTpacAq9qryUTbEju-t6V3ZhtbN5t_DTBNmY2mpvjDZiiWnJ9wI696dltDB97l3ZmHfax7d4zVKOinBby2Eh7qoohpej8by2COaozvTrTqTPf6gzvQqwPpQ5uly7-Vf-T-gK3-W14</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bartier, Valentin</creator><creator>Bousquet, Nicolas</creator><creator>Hanna, Jihad</creator><creator>Mouawad, Amer E.</creator><creator>Siebertz, Sebastian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid></search><sort><creationdate>20240201</creationdate><title>Token Sliding on Graphs of Girth Five</title><author>Bartier, Valentin ; Bousquet, Nicolas ; Hanna, Jihad ; Mouawad, Amer E. ; Siebertz, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-bea52fed25b1916580d2cc733acdb6f9a5427f1e581068906be7b5205cdf97363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics of Computing</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Questions</topic><topic>Sliding</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartier, Valentin</creatorcontrib><creatorcontrib>Bousquet, Nicolas</creatorcontrib><creatorcontrib>Hanna, Jihad</creatorcontrib><creatorcontrib>Mouawad, Amer E.</creatorcontrib><creatorcontrib>Siebertz, Sebastian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartier, Valentin</au><au>Bousquet, Nicolas</au><au>Hanna, Jihad</au><au>Mouawad, Amer E.</au><au>Siebertz, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Token Sliding on Graphs of Girth Five</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>86</volume><issue>2</issue><spage>638</spage><epage>655</epage><pages>638-655</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>In the Token Sliding problem we are given a graph G and two independent sets I s and I t in G of size k ≥ 1 . The goal is to decide whether there exists a sequence ⟨ I 1 , I 2 , … , I ℓ ⟩ of independent sets such that for all j ∈ { 1 , … , ℓ - 1 } the set I j is an independent set of size  k , I 1 = I s , I ℓ = I t and I j ▵ I j + 1 = { u , v } ∈ E ( G ) . Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the problem asks whether there exists a sequence of independent sets that transforms I s into I t where at each step we are allowed to slide one token from a vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity of Token Sliding parameterized by k . As shown by Bartier et al. (Algorithmica 83(9):2914–2951, 2021. https://doi.org/10.1007/s00453-021-00848-1 ), the problem is W[1]-hard on graphs of girth four or less, and the authors posed the question of whether there exists a constant p ≥ 5 such that the problem becomes fixed-parameter tractable on graphs of girth at least p . We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of Token Sliding parameterized by the number of tokens based on the girth of the input graph.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-023-01181-5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2024-02, Vol.86 (2), p.638-655
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2918252476
source SpringerLink Journals
subjects Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Algorithms
Data Structures and Information Theory
Graph theory
Graphs
Mathematics of Computing
Parameterization
Parameters
Questions
Sliding
Theory of Computation
title Token Sliding on Graphs of Girth Five
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Token%20Sliding%20on%20Graphs%20of%20Girth%20Five&rft.jtitle=Algorithmica&rft.au=Bartier,%20Valentin&rft.date=2024-02-01&rft.volume=86&rft.issue=2&rft.spage=638&rft.epage=655&rft.pages=638-655&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-023-01181-5&rft_dat=%3Cproquest_hal_p%3E2918252476%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918252476&rft_id=info:pmid/&rfr_iscdi=true