A hierarchical laplacian TWSVM using similarity clustering for leaf classification

This article introduces a multi-class hierarchical algorithm for semi-supervised classification. The proposed algorithm incorporates the benefits of tree-based classification approaches and vastly available unlabelled data. It also overcomes the deficiency of existing multi-class extension approache...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2022-04, Vol.25 (2), p.1541-1560
Hauptverfasser: Goyal, Neha, Gupta, Kapil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1560
container_issue 2
container_start_page 1541
container_title Cluster computing
container_volume 25
creator Goyal, Neha
Gupta, Kapil
description This article introduces a multi-class hierarchical algorithm for semi-supervised classification. The proposed algorithm incorporates the benefits of tree-based classification approaches and vastly available unlabelled data. It also overcomes the deficiency of existing multi-class extension approaches viz . Non-linearity, imbalanced class classification and increasing classification cost with increasing the number of classes. The proposed algorithm selects classes from a pool and creates two clusters with a notion of maximum inter-cluster distance and intra-cluster similarity. The efficiency and effectiveness of the proposed algorithm are evaluated using one artificial dataset, three benchmark datasets viz. iris , wine , and seeds . The article presents an application of the algorithm for a real-world and complex plant recognition problem using three leaf image datasets i.e. Flavia , Swedish and self-collected . The experimental results confirm that the hierarchical extension serves several benefits, including efficient classification accuracy, less computational cost, faster classification, and reduced class imbalance. An improvement of 11% classification rate on self-collected leaf images with one-fourth of the computational cost required by tree-based laplacian TWSVM confirms its applicability on plant classification and other domains as well.
doi_str_mv 10.1007/s10586-022-03534-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918251662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918251662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-8a152c35ab6301418e78db87f6460e1721391bdce9b0965c30fbac1d1a24af03</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9WZpGnS47L4DxRBFz2GNJu4WbptTdrDfnuzVvDmaYaZ994wP0IuEa4RQNxEBC7LHCjNgXFW5HhEZsgFywUv2HHqWVoLycUpOYtxCwCVoNWMvC6yjbdBB7PxRjdZo_tGG6_bbPXx9v6cjdG3n1n0O9_o4Id9ZpoxDjYcpq4LWWO1SzMdo3cpYPBde05OnG6ivfitc7K6u10tH_Knl_vH5eIpN0zyIZcaOTWM67pkgAVKK-S6lsKVRQkWBUVWYb02tqqhKrlh4GptcI2aFtoBm5OrKbYP3ddo46C23RjadFHRCiXlWJY0qeikMqGLMVin-uB3OuwVgjqgUxM6ldCpH3QKk4lNptgfHrXhL_of1zekB3Fb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918251662</pqid></control><display><type>article</type><title>A hierarchical laplacian TWSVM using similarity clustering for leaf classification</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Goyal, Neha ; Gupta, Kapil</creator><creatorcontrib>Goyal, Neha ; Gupta, Kapil</creatorcontrib><description>This article introduces a multi-class hierarchical algorithm for semi-supervised classification. The proposed algorithm incorporates the benefits of tree-based classification approaches and vastly available unlabelled data. It also overcomes the deficiency of existing multi-class extension approaches viz . Non-linearity, imbalanced class classification and increasing classification cost with increasing the number of classes. The proposed algorithm selects classes from a pool and creates two clusters with a notion of maximum inter-cluster distance and intra-cluster similarity. The efficiency and effectiveness of the proposed algorithm are evaluated using one artificial dataset, three benchmark datasets viz. iris , wine , and seeds . The article presents an application of the algorithm for a real-world and complex plant recognition problem using three leaf image datasets i.e. Flavia , Swedish and self-collected . The experimental results confirm that the hierarchical extension serves several benefits, including efficient classification accuracy, less computational cost, faster classification, and reduced class imbalance. An improvement of 11% classification rate on self-collected leaf images with one-fourth of the computational cost required by tree-based laplacian TWSVM confirms its applicability on plant classification and other domains as well.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-022-03534-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classification ; Clustering ; Computational efficiency ; Computer Communication Networks ; Computer Science ; Computing costs ; Datasets ; Flowers &amp; plants ; Operating Systems ; Processor Architectures ; Similarity ; Support vector machines</subject><ispartof>Cluster computing, 2022-04, Vol.25 (2), p.1541-1560</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-8a152c35ab6301418e78db87f6460e1721391bdce9b0965c30fbac1d1a24af03</citedby><cites>FETCH-LOGICAL-c385t-8a152c35ab6301418e78db87f6460e1721391bdce9b0965c30fbac1d1a24af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-022-03534-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918251662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Goyal, Neha</creatorcontrib><creatorcontrib>Gupta, Kapil</creatorcontrib><title>A hierarchical laplacian TWSVM using similarity clustering for leaf classification</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>This article introduces a multi-class hierarchical algorithm for semi-supervised classification. The proposed algorithm incorporates the benefits of tree-based classification approaches and vastly available unlabelled data. It also overcomes the deficiency of existing multi-class extension approaches viz . Non-linearity, imbalanced class classification and increasing classification cost with increasing the number of classes. The proposed algorithm selects classes from a pool and creates two clusters with a notion of maximum inter-cluster distance and intra-cluster similarity. The efficiency and effectiveness of the proposed algorithm are evaluated using one artificial dataset, three benchmark datasets viz. iris , wine , and seeds . The article presents an application of the algorithm for a real-world and complex plant recognition problem using three leaf image datasets i.e. Flavia , Swedish and self-collected . The experimental results confirm that the hierarchical extension serves several benefits, including efficient classification accuracy, less computational cost, faster classification, and reduced class imbalance. An improvement of 11% classification rate on self-collected leaf images with one-fourth of the computational cost required by tree-based laplacian TWSVM confirms its applicability on plant classification and other domains as well.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computational efficiency</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computing costs</subject><subject>Datasets</subject><subject>Flowers &amp; plants</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Similarity</subject><subject>Support vector machines</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9WZpGnS47L4DxRBFz2GNJu4WbptTdrDfnuzVvDmaYaZ994wP0IuEa4RQNxEBC7LHCjNgXFW5HhEZsgFywUv2HHqWVoLycUpOYtxCwCVoNWMvC6yjbdBB7PxRjdZo_tGG6_bbPXx9v6cjdG3n1n0O9_o4Id9ZpoxDjYcpq4LWWO1SzMdo3cpYPBde05OnG6ivfitc7K6u10tH_Knl_vH5eIpN0zyIZcaOTWM67pkgAVKK-S6lsKVRQkWBUVWYb02tqqhKrlh4GptcI2aFtoBm5OrKbYP3ddo46C23RjadFHRCiXlWJY0qeikMqGLMVin-uB3OuwVgjqgUxM6ldCpH3QKk4lNptgfHrXhL_of1zekB3Fb</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Goyal, Neha</creator><creator>Gupta, Kapil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220401</creationdate><title>A hierarchical laplacian TWSVM using similarity clustering for leaf classification</title><author>Goyal, Neha ; Gupta, Kapil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-8a152c35ab6301418e78db87f6460e1721391bdce9b0965c30fbac1d1a24af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computational efficiency</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computing costs</topic><topic>Datasets</topic><topic>Flowers &amp; plants</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Similarity</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goyal, Neha</creatorcontrib><creatorcontrib>Gupta, Kapil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goyal, Neha</au><au>Gupta, Kapil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hierarchical laplacian TWSVM using similarity clustering for leaf classification</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><spage>1541</spage><epage>1560</epage><pages>1541-1560</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>This article introduces a multi-class hierarchical algorithm for semi-supervised classification. The proposed algorithm incorporates the benefits of tree-based classification approaches and vastly available unlabelled data. It also overcomes the deficiency of existing multi-class extension approaches viz . Non-linearity, imbalanced class classification and increasing classification cost with increasing the number of classes. The proposed algorithm selects classes from a pool and creates two clusters with a notion of maximum inter-cluster distance and intra-cluster similarity. The efficiency and effectiveness of the proposed algorithm are evaluated using one artificial dataset, three benchmark datasets viz. iris , wine , and seeds . The article presents an application of the algorithm for a real-world and complex plant recognition problem using three leaf image datasets i.e. Flavia , Swedish and self-collected . The experimental results confirm that the hierarchical extension serves several benefits, including efficient classification accuracy, less computational cost, faster classification, and reduced class imbalance. An improvement of 11% classification rate on self-collected leaf images with one-fourth of the computational cost required by tree-based laplacian TWSVM confirms its applicability on plant classification and other domains as well.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-022-03534-1</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2022-04, Vol.25 (2), p.1541-1560
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918251662
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Classification
Clustering
Computational efficiency
Computer Communication Networks
Computer Science
Computing costs
Datasets
Flowers & plants
Operating Systems
Processor Architectures
Similarity
Support vector machines
title A hierarchical laplacian TWSVM using similarity clustering for leaf classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hierarchical%20laplacian%20TWSVM%20using%20similarity%20clustering%20for%20leaf%20classification&rft.jtitle=Cluster%20computing&rft.au=Goyal,%20Neha&rft.date=2022-04-01&rft.volume=25&rft.issue=2&rft.spage=1541&rft.epage=1560&rft.pages=1541-1560&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-022-03534-1&rft_dat=%3Cproquest_cross%3E2918251662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918251662&rft_id=info:pmid/&rfr_iscdi=true