Detect anomalies in cloud platforms by using network data: a review

Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2023-10, Vol.26 (5), p.3279-3289
Hauptverfasser: Jayaweera, M. P. G. K., Kithulwatta, W. M. C. J. T., Rathnayaka, R. M. K. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3289
container_issue 5
container_start_page 3279
container_title Cluster computing
container_volume 26
creator Jayaweera, M. P. G. K.
Kithulwatta, W. M. C. J. T.
Rathnayaka, R. M. K. T.
description Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that.
doi_str_mv 10.1007/s10586-023-04055-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918250345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918250345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b6ae871067ed9ac491bf72ce84b27ac85f2f4320f72012b03bf0cf2520967aba3</originalsourceid><addsrcrecordid>eNp9kEtPAyEQx4nRxPr4Ap5IPKMDLMuuN1OfSRMveiZAodm6XSqwNv32omvizdNMZv6P5IfQBYUrCiCvEwXR1AQYJ1CBEIQeoBkVkhMpKn5Ydl7eshHyGJ2ktAaAVrJ2huZ3LjubsR7CRvedS7gbsO3DuMTbXmcf4iZhs8dj6oYVHlzehfiOlzrrG6xxdJ-d252hI6_75M5_5yl6e7h_nT-Rxcvj8_x2QSyTkImptWskhVq6Zatt1VLjJbOuqQyT2jbCM19xBuUIlBngxoP1TDBoa6mN5qfocsrdxvAxupTVOoxxKJWKtbRhAngliopNKhtDStF5tY3dRse9oqC-YakJliqw1A8sRYuJT6ZUxMPKxb_of1xfNidr7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918250345</pqid></control><display><type>article</type><title>Detect anomalies in cloud platforms by using network data: a review</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Jayaweera, M. P. G. K. ; Kithulwatta, W. M. C. J. T. ; Rathnayaka, R. M. K. T.</creator><creatorcontrib>Jayaweera, M. P. G. K. ; Kithulwatta, W. M. C. J. T. ; Rathnayaka, R. M. K. T.</creatorcontrib><description>Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-023-04055-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Anomalies ; Big Data ; Cloud computing ; Computer Communication Networks ; Computer Science ; Confidentiality ; Data analysis ; Deep learning ; Geographical locations ; Machine learning ; Neural networks ; Operating Systems ; Outliers (statistics) ; Principal components analysis ; Processor Architectures ; Software services</subject><ispartof>Cluster computing, 2023-10, Vol.26 (5), p.3279-3289</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b6ae871067ed9ac491bf72ce84b27ac85f2f4320f72012b03bf0cf2520967aba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-023-04055-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918250345?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Jayaweera, M. P. G. K.</creatorcontrib><creatorcontrib>Kithulwatta, W. M. C. J. T.</creatorcontrib><creatorcontrib>Rathnayaka, R. M. K. T.</creatorcontrib><title>Detect anomalies in cloud platforms by using network data: a review</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Confidentiality</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Geographical locations</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Outliers (statistics)</subject><subject>Principal components analysis</subject><subject>Processor Architectures</subject><subject>Software services</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPAyEQx4nRxPr4Ap5IPKMDLMuuN1OfSRMveiZAodm6XSqwNv32omvizdNMZv6P5IfQBYUrCiCvEwXR1AQYJ1CBEIQeoBkVkhMpKn5Ydl7eshHyGJ2ktAaAVrJ2huZ3LjubsR7CRvedS7gbsO3DuMTbXmcf4iZhs8dj6oYVHlzehfiOlzrrG6xxdJ-d252hI6_75M5_5yl6e7h_nT-Rxcvj8_x2QSyTkImptWskhVq6Zatt1VLjJbOuqQyT2jbCM19xBuUIlBngxoP1TDBoa6mN5qfocsrdxvAxupTVOoxxKJWKtbRhAngliopNKhtDStF5tY3dRse9oqC-YakJliqw1A8sRYuJT6ZUxMPKxb_of1xfNidr7A</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Jayaweera, M. P. G. K.</creator><creator>Kithulwatta, W. M. C. J. T.</creator><creator>Rathnayaka, R. M. K. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Detect anomalies in cloud platforms by using network data: a review</title><author>Jayaweera, M. P. G. K. ; Kithulwatta, W. M. C. J. T. ; Rathnayaka, R. M. K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b6ae871067ed9ac491bf72ce84b27ac85f2f4320f72012b03bf0cf2520967aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Confidentiality</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Geographical locations</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Outliers (statistics)</topic><topic>Principal components analysis</topic><topic>Processor Architectures</topic><topic>Software services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayaweera, M. P. G. K.</creatorcontrib><creatorcontrib>Kithulwatta, W. M. C. J. T.</creatorcontrib><creatorcontrib>Rathnayaka, R. M. K. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayaweera, M. P. G. K.</au><au>Kithulwatta, W. M. C. J. T.</au><au>Rathnayaka, R. M. K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detect anomalies in cloud platforms by using network data: a review</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>26</volume><issue>5</issue><spage>3279</spage><epage>3289</epage><pages>3279-3289</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-023-04055-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2023-10, Vol.26 (5), p.3279-3289
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918250345
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Anomalies
Big Data
Cloud computing
Computer Communication Networks
Computer Science
Confidentiality
Data analysis
Deep learning
Geographical locations
Machine learning
Neural networks
Operating Systems
Outliers (statistics)
Principal components analysis
Processor Architectures
Software services
title Detect anomalies in cloud platforms by using network data: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detect%20anomalies%20in%20cloud%20platforms%20by%20using%20network%20data:%20a%20review&rft.jtitle=Cluster%20computing&rft.au=Jayaweera,%20M.%20P.%20G.%20K.&rft.date=2023-10-01&rft.volume=26&rft.issue=5&rft.spage=3279&rft.epage=3289&rft.pages=3279-3289&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-023-04055-1&rft_dat=%3Cproquest_cross%3E2918250345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918250345&rft_id=info:pmid/&rfr_iscdi=true