Detect anomalies in cloud platforms by using network data: a review
Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing sys...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2023-10, Vol.26 (5), p.3279-3289 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3289 |
---|---|
container_issue | 5 |
container_start_page | 3279 |
container_title | Cluster computing |
container_volume | 26 |
creator | Jayaweera, M. P. G. K. Kithulwatta, W. M. C. J. T. Rathnayaka, R. M. K. T. |
description | Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that. |
doi_str_mv | 10.1007/s10586-023-04055-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918250345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918250345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b6ae871067ed9ac491bf72ce84b27ac85f2f4320f72012b03bf0cf2520967aba3</originalsourceid><addsrcrecordid>eNp9kEtPAyEQx4nRxPr4Ap5IPKMDLMuuN1OfSRMveiZAodm6XSqwNv32omvizdNMZv6P5IfQBYUrCiCvEwXR1AQYJ1CBEIQeoBkVkhMpKn5Ydl7eshHyGJ2ktAaAVrJ2huZ3LjubsR7CRvedS7gbsO3DuMTbXmcf4iZhs8dj6oYVHlzehfiOlzrrG6xxdJ-d252hI6_75M5_5yl6e7h_nT-Rxcvj8_x2QSyTkImptWskhVq6Zatt1VLjJbOuqQyT2jbCM19xBuUIlBngxoP1TDBoa6mN5qfocsrdxvAxupTVOoxxKJWKtbRhAngliopNKhtDStF5tY3dRse9oqC-YakJliqw1A8sRYuJT6ZUxMPKxb_of1xfNidr7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918250345</pqid></control><display><type>article</type><title>Detect anomalies in cloud platforms by using network data: a review</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Jayaweera, M. P. G. K. ; Kithulwatta, W. M. C. J. T. ; Rathnayaka, R. M. K. T.</creator><creatorcontrib>Jayaweera, M. P. G. K. ; Kithulwatta, W. M. C. J. T. ; Rathnayaka, R. M. K. T.</creatorcontrib><description>Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-023-04055-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Anomalies ; Big Data ; Cloud computing ; Computer Communication Networks ; Computer Science ; Confidentiality ; Data analysis ; Deep learning ; Geographical locations ; Machine learning ; Neural networks ; Operating Systems ; Outliers (statistics) ; Principal components analysis ; Processor Architectures ; Software services</subject><ispartof>Cluster computing, 2023-10, Vol.26 (5), p.3279-3289</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b6ae871067ed9ac491bf72ce84b27ac85f2f4320f72012b03bf0cf2520967aba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-023-04055-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918250345?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Jayaweera, M. P. G. K.</creatorcontrib><creatorcontrib>Kithulwatta, W. M. C. J. T.</creatorcontrib><creatorcontrib>Rathnayaka, R. M. K. T.</creatorcontrib><title>Detect anomalies in cloud platforms by using network data: a review</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Confidentiality</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Geographical locations</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Outliers (statistics)</subject><subject>Principal components analysis</subject><subject>Processor Architectures</subject><subject>Software services</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPAyEQx4nRxPr4Ap5IPKMDLMuuN1OfSRMveiZAodm6XSqwNv32omvizdNMZv6P5IfQBYUrCiCvEwXR1AQYJ1CBEIQeoBkVkhMpKn5Ydl7eshHyGJ2ktAaAVrJ2huZ3LjubsR7CRvedS7gbsO3DuMTbXmcf4iZhs8dj6oYVHlzehfiOlzrrG6xxdJ-d252hI6_75M5_5yl6e7h_nT-Rxcvj8_x2QSyTkImptWskhVq6Zatt1VLjJbOuqQyT2jbCM19xBuUIlBngxoP1TDBoa6mN5qfocsrdxvAxupTVOoxxKJWKtbRhAngliopNKhtDStF5tY3dRse9oqC-YakJliqw1A8sRYuJT6ZUxMPKxb_of1xfNidr7A</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Jayaweera, M. P. G. K.</creator><creator>Kithulwatta, W. M. C. J. T.</creator><creator>Rathnayaka, R. M. K. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Detect anomalies in cloud platforms by using network data: a review</title><author>Jayaweera, M. P. G. K. ; Kithulwatta, W. M. C. J. T. ; Rathnayaka, R. M. K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b6ae871067ed9ac491bf72ce84b27ac85f2f4320f72012b03bf0cf2520967aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Confidentiality</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Geographical locations</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Outliers (statistics)</topic><topic>Principal components analysis</topic><topic>Processor Architectures</topic><topic>Software services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayaweera, M. P. G. K.</creatorcontrib><creatorcontrib>Kithulwatta, W. M. C. J. T.</creatorcontrib><creatorcontrib>Rathnayaka, R. M. K. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayaweera, M. P. G. K.</au><au>Kithulwatta, W. M. C. J. T.</au><au>Rathnayaka, R. M. K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detect anomalies in cloud platforms by using network data: a review</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>26</volume><issue>5</issue><spage>3279</spage><epage>3289</epage><pages>3279-3289</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Cloud computing is one of the utmost rapidly growing computing domains in today’s information technology ecosphere. Cloud computing links data and applications from various geographical locations over the internet. A large number of transactions and the secreted infrastructure in cloud computing systems have presented the research community with numerous challenges. Among these, maintaining cloud network security has emerged as a major challenge in the modern era. As well, detecting anomalous data has become a significant research area in the cloud computing domain. Anomaly detection (or outlier detection) is the identification of unusual or suspicious data that differs significantly from the majority of the data. Recently, machine learning methods have demonstrated their efficacy in anomaly detection approaches. The goal of this research study is to identify which machine learning algorithm is best suited for analyzing cloud network data on anomaly detection. This research study has led a systematic review by using scholarly articles which are published between 2017 and 2023. This review study has deliberated various techniques for anomaly detection on the cloud and different approaches for that.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-023-04055-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2023-10, Vol.26 (5), p.3279-3289 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918250345 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Anomalies Big Data Cloud computing Computer Communication Networks Computer Science Confidentiality Data analysis Deep learning Geographical locations Machine learning Neural networks Operating Systems Outliers (statistics) Principal components analysis Processor Architectures Software services |
title | Detect anomalies in cloud platforms by using network data: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detect%20anomalies%20in%20cloud%20platforms%20by%20using%20network%20data:%20a%20review&rft.jtitle=Cluster%20computing&rft.au=Jayaweera,%20M.%20P.%20G.%20K.&rft.date=2023-10-01&rft.volume=26&rft.issue=5&rft.spage=3279&rft.epage=3289&rft.pages=3279-3289&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-023-04055-1&rft_dat=%3Cproquest_cross%3E2918250345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918250345&rft_id=info:pmid/&rfr_iscdi=true |