Idempotent distributed counters using a forgetful bloom filter

Distributed key-value stores power the backend of high-performance web services and cloud computing applications. Key-value stores such as Cassandra rely heavily on counters to track occurrences of various kinds of events. However, modern implementations of counters do not provide exactly-once seman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2016-06, Vol.19 (2), p.879-892
Hauptverfasser: Subramanyam, Rajath, Gupta, Indranil, Leslie, Luke M., Wang, Wenting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 2
container_start_page 879
container_title Cluster computing
container_volume 19
creator Subramanyam, Rajath
Gupta, Indranil
Leslie, Luke M.
Wang, Wenting
description Distributed key-value stores power the backend of high-performance web services and cloud computing applications. Key-value stores such as Cassandra rely heavily on counters to track occurrences of various kinds of events. However, modern implementations of counters do not provide exactly-once semantics. E.g., a client may request a counter increment, time out waiting for a response, and create a duplicate request resulting in a double increment at the server. In this paper, we address this problem by presenting, analyzing, and evaluating a novel server-side data structure called the forgetful bloom filter (FBF). Like a traditional Bloom filter, an FBF is a compact representation of a set of elements (e.g., client requests). However, an FBF: (i) can forget older elements (e.g., requests that are too old to apply), and (ii) adapts itself to meet a desired false positive rate under a varying workload. We present experimental results from a prototype implementation of FBFs and an implementation of FBFs in the Cassandra key-value store. Our results show that the FBF is highly accurate in maintaining correct counter values.
doi_str_mv 10.1007/s10586-016-0567-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918249993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918249993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-60a3bc4be78ab835b6add97dbcca57655214b9f90287352465f9fe6c066fc53c3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62ouzW0jyOBlYMCNrkOSJqVDpxmTdOHbm6GCKxeHc-C_HPgAuMXoHiMkHjJGTPIG4TqMi0aegRVmgjaCtfS83rSqQjJxCa5y3iOElCBqBR63nT8cY_FTgd2QSxrsXHwHXZyn4lOGcx6mHhoYYup9CfMI7RjjAYZhrPo1uAhmzP7md6_B58vzx-at2b2_bjdPu8ZRzEvDkaHWtdYLaaykzHLTdUp01jnDBGeM4NaqoBCRgjLSchZU8NwhzoNj1NE1uFt6jyl-zT4XvY9zmupLTRSWpFVK0erCi8ulmHPyQR_TcDDpW2OkT5j0gklXTPqEScuaIUsmV-_U-_TX_H_oB9peasg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918249993</pqid></control><display><type>article</type><title>Idempotent distributed counters using a forgetful bloom filter</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Subramanyam, Rajath ; Gupta, Indranil ; Leslie, Luke M. ; Wang, Wenting</creator><creatorcontrib>Subramanyam, Rajath ; Gupta, Indranil ; Leslie, Luke M. ; Wang, Wenting</creatorcontrib><description>Distributed key-value stores power the backend of high-performance web services and cloud computing applications. Key-value stores such as Cassandra rely heavily on counters to track occurrences of various kinds of events. However, modern implementations of counters do not provide exactly-once semantics. E.g., a client may request a counter increment, time out waiting for a response, and create a duplicate request resulting in a double increment at the server. In this paper, we address this problem by presenting, analyzing, and evaluating a novel server-side data structure called the forgetful bloom filter (FBF). Like a traditional Bloom filter, an FBF is a compact representation of a set of elements (e.g., client requests). However, an FBF: (i) can forget older elements (e.g., requests that are too old to apply), and (ii) adapts itself to meet a desired false positive rate under a varying workload. We present experimental results from a prototype implementation of FBFs and an implementation of FBFs in the Cassandra key-value store. Our results show that the FBF is highly accurate in maintaining correct counter values.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-016-0567-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Computer Communication Networks ; Computer Science ; Data storage ; Data structures ; Operating Systems ; Processor Architectures ; Semantics ; Servers ; Web services ; Workloads</subject><ispartof>Cluster computing, 2016-06, Vol.19 (2), p.879-892</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-60a3bc4be78ab835b6add97dbcca57655214b9f90287352465f9fe6c066fc53c3</citedby><cites>FETCH-LOGICAL-c316t-60a3bc4be78ab835b6add97dbcca57655214b9f90287352465f9fe6c066fc53c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-016-0567-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918249993?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Subramanyam, Rajath</creatorcontrib><creatorcontrib>Gupta, Indranil</creatorcontrib><creatorcontrib>Leslie, Luke M.</creatorcontrib><creatorcontrib>Wang, Wenting</creatorcontrib><title>Idempotent distributed counters using a forgetful bloom filter</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Distributed key-value stores power the backend of high-performance web services and cloud computing applications. Key-value stores such as Cassandra rely heavily on counters to track occurrences of various kinds of events. However, modern implementations of counters do not provide exactly-once semantics. E.g., a client may request a counter increment, time out waiting for a response, and create a duplicate request resulting in a double increment at the server. In this paper, we address this problem by presenting, analyzing, and evaluating a novel server-side data structure called the forgetful bloom filter (FBF). Like a traditional Bloom filter, an FBF is a compact representation of a set of elements (e.g., client requests). However, an FBF: (i) can forget older elements (e.g., requests that are too old to apply), and (ii) adapts itself to meet a desired false positive rate under a varying workload. We present experimental results from a prototype implementation of FBFs and an implementation of FBFs in the Cassandra key-value store. Our results show that the FBF is highly accurate in maintaining correct counter values.</description><subject>Cloud computing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data storage</subject><subject>Data structures</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Semantics</subject><subject>Servers</subject><subject>Web services</subject><subject>Workloads</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62ouzW0jyOBlYMCNrkOSJqVDpxmTdOHbm6GCKxeHc-C_HPgAuMXoHiMkHjJGTPIG4TqMi0aegRVmgjaCtfS83rSqQjJxCa5y3iOElCBqBR63nT8cY_FTgd2QSxrsXHwHXZyn4lOGcx6mHhoYYup9CfMI7RjjAYZhrPo1uAhmzP7md6_B58vzx-at2b2_bjdPu8ZRzEvDkaHWtdYLaaykzHLTdUp01jnDBGeM4NaqoBCRgjLSchZU8NwhzoNj1NE1uFt6jyl-zT4XvY9zmupLTRSWpFVK0erCi8ulmHPyQR_TcDDpW2OkT5j0gklXTPqEScuaIUsmV-_U-_TX_H_oB9peasg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Subramanyam, Rajath</creator><creator>Gupta, Indranil</creator><creator>Leslie, Luke M.</creator><creator>Wang, Wenting</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160601</creationdate><title>Idempotent distributed counters using a forgetful bloom filter</title><author>Subramanyam, Rajath ; Gupta, Indranil ; Leslie, Luke M. ; Wang, Wenting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-60a3bc4be78ab835b6add97dbcca57655214b9f90287352465f9fe6c066fc53c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cloud computing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data storage</topic><topic>Data structures</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Semantics</topic><topic>Servers</topic><topic>Web services</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanyam, Rajath</creatorcontrib><creatorcontrib>Gupta, Indranil</creatorcontrib><creatorcontrib>Leslie, Luke M.</creatorcontrib><creatorcontrib>Wang, Wenting</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanyam, Rajath</au><au>Gupta, Indranil</au><au>Leslie, Luke M.</au><au>Wang, Wenting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Idempotent distributed counters using a forgetful bloom filter</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>19</volume><issue>2</issue><spage>879</spage><epage>892</epage><pages>879-892</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Distributed key-value stores power the backend of high-performance web services and cloud computing applications. Key-value stores such as Cassandra rely heavily on counters to track occurrences of various kinds of events. However, modern implementations of counters do not provide exactly-once semantics. E.g., a client may request a counter increment, time out waiting for a response, and create a duplicate request resulting in a double increment at the server. In this paper, we address this problem by presenting, analyzing, and evaluating a novel server-side data structure called the forgetful bloom filter (FBF). Like a traditional Bloom filter, an FBF is a compact representation of a set of elements (e.g., client requests). However, an FBF: (i) can forget older elements (e.g., requests that are too old to apply), and (ii) adapts itself to meet a desired false positive rate under a varying workload. We present experimental results from a prototype implementation of FBFs and an implementation of FBFs in the Cassandra key-value store. Our results show that the FBF is highly accurate in maintaining correct counter values.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-016-0567-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2016-06, Vol.19 (2), p.879-892
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918249993
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Cloud computing
Computer Communication Networks
Computer Science
Data storage
Data structures
Operating Systems
Processor Architectures
Semantics
Servers
Web services
Workloads
title Idempotent distributed counters using a forgetful bloom filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Idempotent%20distributed%20counters%20using%20a%20forgetful%20bloom%20filter&rft.jtitle=Cluster%20computing&rft.au=Subramanyam,%20Rajath&rft.date=2016-06-01&rft.volume=19&rft.issue=2&rft.spage=879&rft.epage=892&rft.pages=879-892&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-016-0567-8&rft_dat=%3Cproquest_cross%3E2918249993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918249993&rft_id=info:pmid/&rfr_iscdi=true