FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming

The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2022-06, Vol.25 (3), p.2163-2178
Hauptverfasser: Perales Gómez, Ángel Luis, López-de-Teruel, Pedro E., Ruiz, Alberto, García-Mateos, Ginés, Bernabé García, Gregorio, García Clemente, Félix J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2178
container_issue 3
container_start_page 2163
container_title Cluster computing
container_volume 25
creator Perales Gómez, Ángel Luis
López-de-Teruel, Pedro E.
Ruiz, Alberto
García-Mateos, Ginés
Bernabé García, Gregorio
García Clemente, Félix J.
description The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.
doi_str_mv 10.1007/s10586-021-03489-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918249777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918249777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBHYsfcqopCpSIkVM6WnWzaVI2T2smhB_4dlyD1xmlXuzOzs4PQPSWPlBD5FCjJcpEQRhPC01wl6gJNaCZ5IrOUX8aex7XMM3mNbkLYEUKUZGqCvhezz_fl-hkXretrN7RDwCYECKEB1-O2woVvO3wYzL7uj3gItdvgxhTb2gHeg_HuNDCuxCVAd570UGxdfRgg4Kr1eNmuE2sClDg0xve4Mr6JsFt0VZl9gLu_OkVfi5f1_C1Zfbwu57NVUnDB-4RRaiWUnObAOJRG5IqYUmQWcpqloigEt1wRnhUZJVJYysAKAcayqgKbGj5FD6Nu59uTp17v2sG7eFIzRXOWKillRLERFV8OwUOlO19Hu0dNiT7FrMeYdYxZ_8asVSTxkRQi2G3An6X_Yf0AZQqCCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918249777</pqid></control><display><type>article</type><title>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Perales Gómez, Ángel Luis ; López-de-Teruel, Pedro E. ; Ruiz, Alberto ; García-Mateos, Ginés ; Bernabé García, Gregorio ; García Clemente, Félix J.</creator><creatorcontrib>Perales Gómez, Ángel Luis ; López-de-Teruel, Pedro E. ; Ruiz, Alberto ; García-Mateos, Ginés ; Bernabé García, Gregorio ; García Clemente, Félix J.</creatorcontrib><description>The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-021-03489-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Artificial intelligence ; Automation ; Communication ; Computer Communication Networks ; Computer Science ; Concurrency control ; Data analysis ; Data management ; Decision analysis ; Decision making ; Deep learning ; Edge computing ; Farms ; Greenhouses ; Internet of Things ; Machine learning ; Operating Systems ; Processor Architectures ; Product quality ; Quality assessment ; Sensors</subject><ispartof>Cluster computing, 2022-06, Vol.25 (3), p.2163-2178</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</citedby><cites>FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</cites><orcidid>0000-0003-1004-881X ; 0000-0001-7573-1738 ; 0000-0003-2521-4454 ; 0000-0001-6181-5033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-021-03489-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918249777?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Perales Gómez, Ángel Luis</creatorcontrib><creatorcontrib>López-de-Teruel, Pedro E.</creatorcontrib><creatorcontrib>Ruiz, Alberto</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Bernabé García, Gregorio</creatorcontrib><creatorcontrib>García Clemente, Félix J.</creatorcontrib><title>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.</description><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Communication</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Concurrency control</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Farms</subject><subject>Greenhouses</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Product quality</subject><subject>Quality assessment</subject><subject>Sensors</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBHYsfcqopCpSIkVM6WnWzaVI2T2smhB_4dlyD1xmlXuzOzs4PQPSWPlBD5FCjJcpEQRhPC01wl6gJNaCZ5IrOUX8aex7XMM3mNbkLYEUKUZGqCvhezz_fl-hkXretrN7RDwCYECKEB1-O2woVvO3wYzL7uj3gItdvgxhTb2gHeg_HuNDCuxCVAd570UGxdfRgg4Kr1eNmuE2sClDg0xve4Mr6JsFt0VZl9gLu_OkVfi5f1_C1Zfbwu57NVUnDB-4RRaiWUnObAOJRG5IqYUmQWcpqloigEt1wRnhUZJVJYysAKAcayqgKbGj5FD6Nu59uTp17v2sG7eFIzRXOWKillRLERFV8OwUOlO19Hu0dNiT7FrMeYdYxZ_8asVSTxkRQi2G3An6X_Yf0AZQqCCg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Perales Gómez, Ángel Luis</creator><creator>López-de-Teruel, Pedro E.</creator><creator>Ruiz, Alberto</creator><creator>García-Mateos, Ginés</creator><creator>Bernabé García, Gregorio</creator><creator>García Clemente, Félix J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1004-881X</orcidid><orcidid>https://orcid.org/0000-0001-7573-1738</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0001-6181-5033</orcidid></search><sort><creationdate>20220601</creationdate><title>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</title><author>Perales Gómez, Ángel Luis ; López-de-Teruel, Pedro E. ; Ruiz, Alberto ; García-Mateos, Ginés ; Bernabé García, Gregorio ; García Clemente, Félix J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Communication</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Concurrency control</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Farms</topic><topic>Greenhouses</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Product quality</topic><topic>Quality assessment</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perales Gómez, Ángel Luis</creatorcontrib><creatorcontrib>López-de-Teruel, Pedro E.</creatorcontrib><creatorcontrib>Ruiz, Alberto</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Bernabé García, Gregorio</creatorcontrib><creatorcontrib>García Clemente, Félix J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perales Gómez, Ángel Luis</au><au>López-de-Teruel, Pedro E.</au><au>Ruiz, Alberto</au><au>García-Mateos, Ginés</au><au>Bernabé García, Gregorio</au><au>García Clemente, Félix J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>25</volume><issue>3</issue><spage>2163</spage><epage>2178</epage><pages>2163-2178</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-021-03489-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1004-881X</orcidid><orcidid>https://orcid.org/0000-0001-7573-1738</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0001-6181-5033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2022-06, Vol.25 (3), p.2163-2178
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918249777
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Agriculture
Artificial intelligence
Automation
Communication
Computer Communication Networks
Computer Science
Concurrency control
Data analysis
Data management
Decision analysis
Decision making
Deep learning
Edge computing
Farms
Greenhouses
Internet of Things
Machine learning
Operating Systems
Processor Architectures
Product quality
Quality assessment
Sensors
title FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FARMIT:%20continuous%20assessment%20of%20crop%20quality%20using%20machine%20learning%20and%20deep%20learning%20techniques%20for%20IoT-based%20smart%20farming&rft.jtitle=Cluster%20computing&rft.au=Perales%20G%C3%B3mez,%20%C3%81ngel%20Luis&rft.date=2022-06-01&rft.volume=25&rft.issue=3&rft.spage=2163&rft.epage=2178&rft.pages=2163-2178&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-021-03489-9&rft_dat=%3Cproquest_cross%3E2918249777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918249777&rft_id=info:pmid/&rfr_iscdi=true