FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming
The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2022-06, Vol.25 (3), p.2163-2178 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2178 |
---|---|
container_issue | 3 |
container_start_page | 2163 |
container_title | Cluster computing |
container_volume | 25 |
creator | Perales Gómez, Ángel Luis López-de-Teruel, Pedro E. Ruiz, Alberto García-Mateos, Ginés Bernabé García, Gregorio García Clemente, Félix J. |
description | The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71. |
doi_str_mv | 10.1007/s10586-021-03489-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918249777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918249777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBHYsfcqopCpSIkVM6WnWzaVI2T2smhB_4dlyD1xmlXuzOzs4PQPSWPlBD5FCjJcpEQRhPC01wl6gJNaCZ5IrOUX8aex7XMM3mNbkLYEUKUZGqCvhezz_fl-hkXretrN7RDwCYECKEB1-O2woVvO3wYzL7uj3gItdvgxhTb2gHeg_HuNDCuxCVAd570UGxdfRgg4Kr1eNmuE2sClDg0xve4Mr6JsFt0VZl9gLu_OkVfi5f1_C1Zfbwu57NVUnDB-4RRaiWUnObAOJRG5IqYUmQWcpqloigEt1wRnhUZJVJYysAKAcayqgKbGj5FD6Nu59uTp17v2sG7eFIzRXOWKillRLERFV8OwUOlO19Hu0dNiT7FrMeYdYxZ_8asVSTxkRQi2G3An6X_Yf0AZQqCCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918249777</pqid></control><display><type>article</type><title>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Perales Gómez, Ángel Luis ; López-de-Teruel, Pedro E. ; Ruiz, Alberto ; García-Mateos, Ginés ; Bernabé García, Gregorio ; García Clemente, Félix J.</creator><creatorcontrib>Perales Gómez, Ángel Luis ; López-de-Teruel, Pedro E. ; Ruiz, Alberto ; García-Mateos, Ginés ; Bernabé García, Gregorio ; García Clemente, Félix J.</creatorcontrib><description>The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-021-03489-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Artificial intelligence ; Automation ; Communication ; Computer Communication Networks ; Computer Science ; Concurrency control ; Data analysis ; Data management ; Decision analysis ; Decision making ; Deep learning ; Edge computing ; Farms ; Greenhouses ; Internet of Things ; Machine learning ; Operating Systems ; Processor Architectures ; Product quality ; Quality assessment ; Sensors</subject><ispartof>Cluster computing, 2022-06, Vol.25 (3), p.2163-2178</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</citedby><cites>FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</cites><orcidid>0000-0003-1004-881X ; 0000-0001-7573-1738 ; 0000-0003-2521-4454 ; 0000-0001-6181-5033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-021-03489-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918249777?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Perales Gómez, Ángel Luis</creatorcontrib><creatorcontrib>López-de-Teruel, Pedro E.</creatorcontrib><creatorcontrib>Ruiz, Alberto</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Bernabé García, Gregorio</creatorcontrib><creatorcontrib>García Clemente, Félix J.</creatorcontrib><title>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.</description><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Communication</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Concurrency control</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Farms</subject><subject>Greenhouses</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Product quality</subject><subject>Quality assessment</subject><subject>Sensors</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBHYsfcqopCpSIkVM6WnWzaVI2T2smhB_4dlyD1xmlXuzOzs4PQPSWPlBD5FCjJcpEQRhPC01wl6gJNaCZ5IrOUX8aex7XMM3mNbkLYEUKUZGqCvhezz_fl-hkXretrN7RDwCYECKEB1-O2woVvO3wYzL7uj3gItdvgxhTb2gHeg_HuNDCuxCVAd570UGxdfRgg4Kr1eNmuE2sClDg0xve4Mr6JsFt0VZl9gLu_OkVfi5f1_C1Zfbwu57NVUnDB-4RRaiWUnObAOJRG5IqYUmQWcpqloigEt1wRnhUZJVJYysAKAcayqgKbGj5FD6Nu59uTp17v2sG7eFIzRXOWKillRLERFV8OwUOlO19Hu0dNiT7FrMeYdYxZ_8asVSTxkRQi2G3An6X_Yf0AZQqCCg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Perales Gómez, Ángel Luis</creator><creator>López-de-Teruel, Pedro E.</creator><creator>Ruiz, Alberto</creator><creator>García-Mateos, Ginés</creator><creator>Bernabé García, Gregorio</creator><creator>García Clemente, Félix J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1004-881X</orcidid><orcidid>https://orcid.org/0000-0001-7573-1738</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0001-6181-5033</orcidid></search><sort><creationdate>20220601</creationdate><title>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</title><author>Perales Gómez, Ángel Luis ; López-de-Teruel, Pedro E. ; Ruiz, Alberto ; García-Mateos, Ginés ; Bernabé García, Gregorio ; García Clemente, Félix J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-211b7ed318e23eda6890ad65be81546cc63b39035c51076b12eb66eab2ffeb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Communication</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Concurrency control</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Farms</topic><topic>Greenhouses</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Product quality</topic><topic>Quality assessment</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perales Gómez, Ángel Luis</creatorcontrib><creatorcontrib>López-de-Teruel, Pedro E.</creatorcontrib><creatorcontrib>Ruiz, Alberto</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Bernabé García, Gregorio</creatorcontrib><creatorcontrib>García Clemente, Félix J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perales Gómez, Ángel Luis</au><au>López-de-Teruel, Pedro E.</au><au>Ruiz, Alberto</au><au>García-Mateos, Ginés</au><au>Bernabé García, Gregorio</au><au>García Clemente, Félix J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>25</volume><issue>3</issue><spage>2163</spage><epage>2178</epage><pages>2163-2178</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-021-03489-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1004-881X</orcidid><orcidid>https://orcid.org/0000-0001-7573-1738</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0001-6181-5033</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2022-06, Vol.25 (3), p.2163-2178 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918249777 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Agriculture Artificial intelligence Automation Communication Computer Communication Networks Computer Science Concurrency control Data analysis Data management Decision analysis Decision making Deep learning Edge computing Farms Greenhouses Internet of Things Machine learning Operating Systems Processor Architectures Product quality Quality assessment Sensors |
title | FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FARMIT:%20continuous%20assessment%20of%20crop%20quality%20using%20machine%20learning%20and%20deep%20learning%20techniques%20for%20IoT-based%20smart%20farming&rft.jtitle=Cluster%20computing&rft.au=Perales%20G%C3%B3mez,%20%C3%81ngel%20Luis&rft.date=2022-06-01&rft.volume=25&rft.issue=3&rft.spage=2163&rft.epage=2178&rft.pages=2163-2178&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-021-03489-9&rft_dat=%3Cproquest_cross%3E2918249777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918249777&rft_id=info:pmid/&rfr_iscdi=true |