Fusion of deep learning based cyberattack detection and classification model for intelligent systems
In recent years, the exponential growth of malware has posed a significant security threat to intelligent systems. Earlier static and dynamic analysis methods fail to achieve effective recognition rate and incurs high computational complexity. The recently developed machine learning (ML) and deep le...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2023-04, Vol.26 (2), p.1363-1374 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1374 |
---|---|
container_issue | 2 |
container_start_page | 1363 |
container_title | Cluster computing |
container_volume | 26 |
creator | Alzubi, Omar A. Qiqieh, Issa Alzubi, Jafar A. |
description | In recent years, the exponential growth of malware has posed a significant security threat to intelligent systems. Earlier static and dynamic analysis methods fail to achieve effective recognition rate and incurs high computational complexity. The recently developed machine learning (ML) and deep learning (DL) models can be employed to detect and classify cyberattacks and Malware efficiently. This paper presents a fusion of deep learning based cyberattack detection and classification model for intelligent systems named FDL-CADIS technique. The proposed FDL-CADIS technique transforms the Malware binary files into two-dimensional images, which are then classified by the fusion model. The FDL-CADIS technique employs the binary input images into the MobileNetv2 model for the extraction of features and the hyper parameter tuning process takes place utilizing the black widow optimization technique. The MobileNetv2 model derives all features from the Malware dataset and trains the model using the derived features. Finally, an ensemble of voting based classifiers, including gated recurrent unit and long short-term memory techniques, for Malware cyberattack detection and classification was developed. A comprehensive range of experimental analysis is performed against the benchmark dataset to demonstrate the FDL-CADIS technique’s promising performance. According to the comparative analysis of the results, the FDL-CADIS technique outperformed current approaches. |
doi_str_mv | 10.1007/s10586-022-03686-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918248956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918248956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4d75bbb1cfb63f4ea2b5d204830dde6c973a4339f67991525a640b392c85fb1a3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwHPq3lsNpujFKtCwYueQx6TsnWbrUl66L83tYI3LzPD9xr4ELql5J4SIh8yJaLvGsJYQ3h3vM7QjArJGylafl5vXkHZC3mJrnLeEEKUZGqG_HKfhyniKWAPsMMjmBSHuMbWZPDYHSwkU4pxn5Uv4MpRbGJlRpPzEAZnfqDt5GHEYUp4iAXGcVhDLDgfcoFtvkYXwYwZbn73HH0sn94XL83q7fl18bhqHKeqNK2XwlpLXbAdDy0YZoVnpO058R46pyQ3LecqdFIpKpgwXUssV8z1Ilhq-BzdnXJ3afraQy56M-1TrC81U7Rnba9EV1XspHJpyjlB0Ls0bE06aEr0sU19alPXNvVPm3XOET-ZchXHNaS_6H9c39yDeTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918248956</pqid></control><display><type>article</type><title>Fusion of deep learning based cyberattack detection and classification model for intelligent systems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Alzubi, Omar A. ; Qiqieh, Issa ; Alzubi, Jafar A.</creator><creatorcontrib>Alzubi, Omar A. ; Qiqieh, Issa ; Alzubi, Jafar A.</creatorcontrib><description>In recent years, the exponential growth of malware has posed a significant security threat to intelligent systems. Earlier static and dynamic analysis methods fail to achieve effective recognition rate and incurs high computational complexity. The recently developed machine learning (ML) and deep learning (DL) models can be employed to detect and classify cyberattacks and Malware efficiently. This paper presents a fusion of deep learning based cyberattack detection and classification model for intelligent systems named FDL-CADIS technique. The proposed FDL-CADIS technique transforms the Malware binary files into two-dimensional images, which are then classified by the fusion model. The FDL-CADIS technique employs the binary input images into the MobileNetv2 model for the extraction of features and the hyper parameter tuning process takes place utilizing the black widow optimization technique. The MobileNetv2 model derives all features from the Malware dataset and trains the model using the derived features. Finally, an ensemble of voting based classifiers, including gated recurrent unit and long short-term memory techniques, for Malware cyberattack detection and classification was developed. A comprehensive range of experimental analysis is performed against the benchmark dataset to demonstrate the FDL-CADIS technique’s promising performance. According to the comparative analysis of the results, the FDL-CADIS technique outperformed current approaches.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-022-03686-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Computer Communication Networks ; Computer Science ; Cybersecurity ; Datasets ; Deep learning ; Embedded systems ; Intelligent systems ; Machine learning ; Malware ; Methods ; Operating Systems ; Processor Architectures ; Ransomware ; Software ; Support vector machines ; System effectiveness</subject><ispartof>Cluster computing, 2023-04, Vol.26 (2), p.1363-1374</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4d75bbb1cfb63f4ea2b5d204830dde6c973a4339f67991525a640b392c85fb1a3</citedby><cites>FETCH-LOGICAL-c319t-4d75bbb1cfb63f4ea2b5d204830dde6c973a4339f67991525a640b392c85fb1a3</cites><orcidid>0000-0001-9986-1123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-022-03686-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918248956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Alzubi, Omar A.</creatorcontrib><creatorcontrib>Qiqieh, Issa</creatorcontrib><creatorcontrib>Alzubi, Jafar A.</creatorcontrib><title>Fusion of deep learning based cyberattack detection and classification model for intelligent systems</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>In recent years, the exponential growth of malware has posed a significant security threat to intelligent systems. Earlier static and dynamic analysis methods fail to achieve effective recognition rate and incurs high computational complexity. The recently developed machine learning (ML) and deep learning (DL) models can be employed to detect and classify cyberattacks and Malware efficiently. This paper presents a fusion of deep learning based cyberattack detection and classification model for intelligent systems named FDL-CADIS technique. The proposed FDL-CADIS technique transforms the Malware binary files into two-dimensional images, which are then classified by the fusion model. The FDL-CADIS technique employs the binary input images into the MobileNetv2 model for the extraction of features and the hyper parameter tuning process takes place utilizing the black widow optimization technique. The MobileNetv2 model derives all features from the Malware dataset and trains the model using the derived features. Finally, an ensemble of voting based classifiers, including gated recurrent unit and long short-term memory techniques, for Malware cyberattack detection and classification was developed. A comprehensive range of experimental analysis is performed against the benchmark dataset to demonstrate the FDL-CADIS technique’s promising performance. According to the comparative analysis of the results, the FDL-CADIS technique outperformed current approaches.</description><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Embedded systems</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Methods</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Ransomware</subject><subject>Software</subject><subject>Support vector machines</subject><subject>System effectiveness</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UEtLAzEQDqJgrf4BTwHPq3lsNpujFKtCwYueQx6TsnWbrUl66L83tYI3LzPD9xr4ELql5J4SIh8yJaLvGsJYQ3h3vM7QjArJGylafl5vXkHZC3mJrnLeEEKUZGqG_HKfhyniKWAPsMMjmBSHuMbWZPDYHSwkU4pxn5Uv4MpRbGJlRpPzEAZnfqDt5GHEYUp4iAXGcVhDLDgfcoFtvkYXwYwZbn73HH0sn94XL83q7fl18bhqHKeqNK2XwlpLXbAdDy0YZoVnpO058R46pyQ3LecqdFIpKpgwXUssV8z1Ilhq-BzdnXJ3afraQy56M-1TrC81U7Rnba9EV1XspHJpyjlB0Ls0bE06aEr0sU19alPXNvVPm3XOET-ZchXHNaS_6H9c39yDeTo</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Alzubi, Omar A.</creator><creator>Qiqieh, Issa</creator><creator>Alzubi, Jafar A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9986-1123</orcidid></search><sort><creationdate>20230401</creationdate><title>Fusion of deep learning based cyberattack detection and classification model for intelligent systems</title><author>Alzubi, Omar A. ; Qiqieh, Issa ; Alzubi, Jafar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4d75bbb1cfb63f4ea2b5d204830dde6c973a4339f67991525a640b392c85fb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Embedded systems</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Methods</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Ransomware</topic><topic>Software</topic><topic>Support vector machines</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alzubi, Omar A.</creatorcontrib><creatorcontrib>Qiqieh, Issa</creatorcontrib><creatorcontrib>Alzubi, Jafar A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alzubi, Omar A.</au><au>Qiqieh, Issa</au><au>Alzubi, Jafar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of deep learning based cyberattack detection and classification model for intelligent systems</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>26</volume><issue>2</issue><spage>1363</spage><epage>1374</epage><pages>1363-1374</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>In recent years, the exponential growth of malware has posed a significant security threat to intelligent systems. Earlier static and dynamic analysis methods fail to achieve effective recognition rate and incurs high computational complexity. The recently developed machine learning (ML) and deep learning (DL) models can be employed to detect and classify cyberattacks and Malware efficiently. This paper presents a fusion of deep learning based cyberattack detection and classification model for intelligent systems named FDL-CADIS technique. The proposed FDL-CADIS technique transforms the Malware binary files into two-dimensional images, which are then classified by the fusion model. The FDL-CADIS technique employs the binary input images into the MobileNetv2 model for the extraction of features and the hyper parameter tuning process takes place utilizing the black widow optimization technique. The MobileNetv2 model derives all features from the Malware dataset and trains the model using the derived features. Finally, an ensemble of voting based classifiers, including gated recurrent unit and long short-term memory techniques, for Malware cyberattack detection and classification was developed. A comprehensive range of experimental analysis is performed against the benchmark dataset to demonstrate the FDL-CADIS technique’s promising performance. According to the comparative analysis of the results, the FDL-CADIS technique outperformed current approaches.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-022-03686-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9986-1123</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2023-04, Vol.26 (2), p.1363-1374 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918248956 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Classification Computer Communication Networks Computer Science Cybersecurity Datasets Deep learning Embedded systems Intelligent systems Machine learning Malware Methods Operating Systems Processor Architectures Ransomware Software Support vector machines System effectiveness |
title | Fusion of deep learning based cyberattack detection and classification model for intelligent systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20deep%20learning%20based%20cyberattack%20detection%20and%20classification%20model%20for%20intelligent%20systems&rft.jtitle=Cluster%20computing&rft.au=Alzubi,%20Omar%20A.&rft.date=2023-04-01&rft.volume=26&rft.issue=2&rft.spage=1363&rft.epage=1374&rft.pages=1363-1374&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-022-03686-0&rft_dat=%3Cproquest_cross%3E2918248956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918248956&rft_id=info:pmid/&rfr_iscdi=true |