An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment

Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and a resource allocation methodology. The existing methodologies for dynamic resource allocation do not pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2020-09, Vol.23 (3), p.1711-1724
Hauptverfasser: Ramasamy, Vadivel, Thalavai Pillai, SudalaiMuthu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1724
container_issue 3
container_start_page 1711
container_title Cluster computing
container_volume 23
creator Ramasamy, Vadivel
Thalavai Pillai, SudalaiMuthu
description Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and a resource allocation methodology. The existing methodologies for dynamic resource allocation do not provide effective performance isolation between the VM and Artificial Demand Analysis machines since it gets affected by interferences. To overcome these issues, this paper proposes a conceptual model and an effective algorithm to achieve dynamic resource allocation by migrating tasks or requests in VMs. At first, task demands from the multiple users go to the feature extraction process. In feature extraction, features of the user's tasks and cloud server are extracted. Next both features are reduced by using Modified PCA algorithm to reduce the dynamic resource allocation processing time. Finally, both the features are combined and resource allocation is performed using Hybrid Particle Swarm Optimization and Modified Genetic Algorithm (HPSO-MGA). Then the optimized task has been scheduled to particular VM for allocating the resources. The experimental result of the proposed resource allocation methodology indicates better performance when compared with the existing methods Firefly and Krill herd Load Balancing (LB). For 100 VMs the reliability of HPSO-MGA is 0.87 but the exiting krill herd LB and IDSA gives 0.78 and 0.85, which is lower than the proposed one.
doi_str_mv 10.1007/s10586-020-03118-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918246581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918246581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ca13d63d83c4497f60c8375437c4d68853df0c5527671a07a3256e7337d9b70b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOppMJj-zLEVboaKgrkOaydSUmaQm09L69KaO4M7VvXDPOffwAXBN8C3BWNwlgpnkCBcYYUqIRPsTMCJMUCRYSU_zTvNZSCbOwUVKa4xxJYpqBPTEQ9s01vRuZ-H85fUZPc0mMGx617kv3bvgoW5XIbr-o4NNiLA-eN05A6NNYRuNzec2mEHpPDRt2NbQ-p2LwXfW95fgrNFtsle_cwzeH-7fpnO0eJ49TicLZCgXPTKa0JrTWlJTlpVoODaSHssLU9ZcSkbrBhvGCsEF0VhoWjBuBaWirpYCL-kY3Ay5mxg-tzb1ap37-fxSFRWRRcmZJFlVDCoTQ0rRNmoTXafjQRGsjijVgFJllOoHpdpnEx1MKYv9ysa_6H9c3_MFdxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918246581</pqid></control><display><type>article</type><title>An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ramasamy, Vadivel ; Thalavai Pillai, SudalaiMuthu</creator><creatorcontrib>Ramasamy, Vadivel ; Thalavai Pillai, SudalaiMuthu</creatorcontrib><description>Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and a resource allocation methodology. The existing methodologies for dynamic resource allocation do not provide effective performance isolation between the VM and Artificial Demand Analysis machines since it gets affected by interferences. To overcome these issues, this paper proposes a conceptual model and an effective algorithm to achieve dynamic resource allocation by migrating tasks or requests in VMs. At first, task demands from the multiple users go to the feature extraction process. In feature extraction, features of the user's tasks and cloud server are extracted. Next both features are reduced by using Modified PCA algorithm to reduce the dynamic resource allocation processing time. Finally, both the features are combined and resource allocation is performed using Hybrid Particle Swarm Optimization and Modified Genetic Algorithm (HPSO-MGA). Then the optimized task has been scheduled to particular VM for allocating the resources. The experimental result of the proposed resource allocation methodology indicates better performance when compared with the existing methods Firefly and Krill herd Load Balancing (LB). For 100 VMs the reliability of HPSO-MGA is 0.87 but the exiting krill herd LB and IDSA gives 0.78 and 0.85, which is lower than the proposed one.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-020-03118-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Computer centers ; Computer Communication Networks ; Computer Science ; Demand analysis ; Energy consumption ; Energy efficiency ; Feature extraction ; Genetic algorithms ; Krill ; Operating Systems ; Optimization algorithms ; Particle swarm optimization ; Processor Architectures ; Resource allocation ; Shutdowns ; Simulation ; Software services</subject><ispartof>Cluster computing, 2020-09, Vol.23 (3), p.1711-1724</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ca13d63d83c4497f60c8375437c4d68853df0c5527671a07a3256e7337d9b70b3</citedby><cites>FETCH-LOGICAL-c367t-ca13d63d83c4497f60c8375437c4d68853df0c5527671a07a3256e7337d9b70b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-020-03118-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918246581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Ramasamy, Vadivel</creatorcontrib><creatorcontrib>Thalavai Pillai, SudalaiMuthu</creatorcontrib><title>An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and a resource allocation methodology. The existing methodologies for dynamic resource allocation do not provide effective performance isolation between the VM and Artificial Demand Analysis machines since it gets affected by interferences. To overcome these issues, this paper proposes a conceptual model and an effective algorithm to achieve dynamic resource allocation by migrating tasks or requests in VMs. At first, task demands from the multiple users go to the feature extraction process. In feature extraction, features of the user's tasks and cloud server are extracted. Next both features are reduced by using Modified PCA algorithm to reduce the dynamic resource allocation processing time. Finally, both the features are combined and resource allocation is performed using Hybrid Particle Swarm Optimization and Modified Genetic Algorithm (HPSO-MGA). Then the optimized task has been scheduled to particular VM for allocating the resources. The experimental result of the proposed resource allocation methodology indicates better performance when compared with the existing methods Firefly and Krill herd Load Balancing (LB). For 100 VMs the reliability of HPSO-MGA is 0.87 but the exiting krill herd LB and IDSA gives 0.78 and 0.85, which is lower than the proposed one.</description><subject>Cloud computing</subject><subject>Computer centers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Demand analysis</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Krill</subject><subject>Operating Systems</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Processor Architectures</subject><subject>Resource allocation</subject><subject>Shutdowns</subject><subject>Simulation</subject><subject>Software services</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOppMJj-zLEVboaKgrkOaydSUmaQm09L69KaO4M7VvXDPOffwAXBN8C3BWNwlgpnkCBcYYUqIRPsTMCJMUCRYSU_zTvNZSCbOwUVKa4xxJYpqBPTEQ9s01vRuZ-H85fUZPc0mMGx617kv3bvgoW5XIbr-o4NNiLA-eN05A6NNYRuNzec2mEHpPDRt2NbQ-p2LwXfW95fgrNFtsle_cwzeH-7fpnO0eJ49TicLZCgXPTKa0JrTWlJTlpVoODaSHssLU9ZcSkbrBhvGCsEF0VhoWjBuBaWirpYCL-kY3Ay5mxg-tzb1ap37-fxSFRWRRcmZJFlVDCoTQ0rRNmoTXafjQRGsjijVgFJllOoHpdpnEx1MKYv9ysa_6H9c3_MFdxA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ramasamy, Vadivel</creator><creator>Thalavai Pillai, SudalaiMuthu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200901</creationdate><title>An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment</title><author>Ramasamy, Vadivel ; Thalavai Pillai, SudalaiMuthu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ca13d63d83c4497f60c8375437c4d68853df0c5527671a07a3256e7337d9b70b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Computer centers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Demand analysis</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Krill</topic><topic>Operating Systems</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Processor Architectures</topic><topic>Resource allocation</topic><topic>Shutdowns</topic><topic>Simulation</topic><topic>Software services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramasamy, Vadivel</creatorcontrib><creatorcontrib>Thalavai Pillai, SudalaiMuthu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramasamy, Vadivel</au><au>Thalavai Pillai, SudalaiMuthu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>23</volume><issue>3</issue><spage>1711</spage><epage>1724</epage><pages>1711-1724</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and a resource allocation methodology. The existing methodologies for dynamic resource allocation do not provide effective performance isolation between the VM and Artificial Demand Analysis machines since it gets affected by interferences. To overcome these issues, this paper proposes a conceptual model and an effective algorithm to achieve dynamic resource allocation by migrating tasks or requests in VMs. At first, task demands from the multiple users go to the feature extraction process. In feature extraction, features of the user's tasks and cloud server are extracted. Next both features are reduced by using Modified PCA algorithm to reduce the dynamic resource allocation processing time. Finally, both the features are combined and resource allocation is performed using Hybrid Particle Swarm Optimization and Modified Genetic Algorithm (HPSO-MGA). Then the optimized task has been scheduled to particular VM for allocating the resources. The experimental result of the proposed resource allocation methodology indicates better performance when compared with the existing methods Firefly and Krill herd Load Balancing (LB). For 100 VMs the reliability of HPSO-MGA is 0.87 but the exiting krill herd LB and IDSA gives 0.78 and 0.85, which is lower than the proposed one.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-020-03118-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2020-09, Vol.23 (3), p.1711-1724
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918246581
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Cloud computing
Computer centers
Computer Communication Networks
Computer Science
Demand analysis
Energy consumption
Energy efficiency
Feature extraction
Genetic algorithms
Krill
Operating Systems
Optimization algorithms
Particle swarm optimization
Processor Architectures
Resource allocation
Shutdowns
Simulation
Software services
title An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20HPSO-MGA%20optimization%20algorithm%20for%20dynamic%20resource%20allocation%20in%20cloud%20environment&rft.jtitle=Cluster%20computing&rft.au=Ramasamy,%20Vadivel&rft.date=2020-09-01&rft.volume=23&rft.issue=3&rft.spage=1711&rft.epage=1724&rft.pages=1711-1724&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-020-03118-x&rft_dat=%3Cproquest_cross%3E2918246581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918246581&rft_id=info:pmid/&rfr_iscdi=true