Multi-domain ontology mapping based on semantics

Ontology mapping indicates the semantic interconnection between the concepts of ontologies, while multi-domain ontology mapping is usually used to solve the semantic interconnection problem between domain ontologies. However, due to the differences in the definition approaches, there exists the hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2017-12, Vol.20 (4), p.3379-3391
Hauptverfasser: Song, Shengli, Zhang, Xiang, Qin, Guimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3391
container_issue 4
container_start_page 3379
container_title Cluster computing
container_volume 20
creator Song, Shengli
Zhang, Xiang
Qin, Guimin
description Ontology mapping indicates the semantic interconnection between the concepts of ontologies, while multi-domain ontology mapping is usually used to solve the semantic interconnection problem between domain ontologies. However, due to the differences in the definition approaches, there exists the heterogeneity among the domain ontologies to a certain extent. This paper proposes a probability-based and similarity-based ontology mapping algorithm, the purpose of which is to calculate the similarity between the concepts of the multi-domain ontology. Using the ESA algorithm based on Wikipedia and the principle that the similarity between the concepts with the same name equals 1, the paper proposes a new concept, ontology mapping association graph, to represent mapping results. The experiments show that the accuracy rate of the probability-based and similarity-based ontology mapping algorithm can reach 80% on both two Chinese test sets, namely, WordSimilarity-353 and Words-240. Compared with other algorithms, it does stand out on the aspect of accuracy.
doi_str_mv 10.1007/s10586-017-1087-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918240152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918240152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-84d7bca46713314dd199192503d7e1e60695b482cacbd3f695db4d0d29c1589a3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A6-i9eUwmSym-oOJG1yGTZMqUzsNkCu2_N2UEV67u65xz4SPkFuEeAdRDQpBVSQEVRagUPZyRBUrFqZKCn-ee56uqpLokVyltAUArphcE3ve7qaV-6GzbF0M_Dbthcyw6O45tvylqm4LP6yKFzvZT69I1uWjsLoWb37okX89Pn6tXuv54eVs9rqnjWE60El7VzopSIecovEetUTMJ3KuAoYRSy1pUzFlXe97kydfCg2faoay05UtyN-eOcfjehzSZ7bCPfX5pmMaKCUDJsgpnlYtDSjE0ZoxtZ-PRIJgTGDODMRmMOYExh-xhsydlbb8J8S_5f9MPSGplHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918240152</pqid></control><display><type>article</type><title>Multi-domain ontology mapping based on semantics</title><source>SpringerNature Journals</source><source>Proquest Central</source><source>ProQuest Central UK/Ireland</source><creator>Song, Shengli ; Zhang, Xiang ; Qin, Guimin</creator><creatorcontrib>Song, Shengli ; Zhang, Xiang ; Qin, Guimin</creatorcontrib><description>Ontology mapping indicates the semantic interconnection between the concepts of ontologies, while multi-domain ontology mapping is usually used to solve the semantic interconnection problem between domain ontologies. However, due to the differences in the definition approaches, there exists the heterogeneity among the domain ontologies to a certain extent. This paper proposes a probability-based and similarity-based ontology mapping algorithm, the purpose of which is to calculate the similarity between the concepts of the multi-domain ontology. Using the ESA algorithm based on Wikipedia and the principle that the similarity between the concepts with the same name equals 1, the paper proposes a new concept, ontology mapping association graph, to represent mapping results. The experiments show that the accuracy rate of the probability-based and similarity-based ontology mapping algorithm can reach 80% on both two Chinese test sets, namely, WordSimilarity-353 and Words-240. Compared with other algorithms, it does stand out on the aspect of accuracy.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-017-1087-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Dynamic programming ; Graphs ; Heterogeneity ; Interoperability ; Knowledge ; Knowledge representation ; Language ; Mapping ; Online instruction ; Ontology ; Operating Systems ; Processor Architectures ; Semantic web ; Semantics ; Similarity ; Software ; World Wide Web</subject><ispartof>Cluster computing, 2017-12, Vol.20 (4), p.3379-3391</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-84d7bca46713314dd199192503d7e1e60695b482cacbd3f695db4d0d29c1589a3</citedby><cites>FETCH-LOGICAL-c316t-84d7bca46713314dd199192503d7e1e60695b482cacbd3f695db4d0d29c1589a3</cites><orcidid>0000-0001-6879-0027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-017-1087-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918240152?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Song, Shengli</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Qin, Guimin</creatorcontrib><title>Multi-domain ontology mapping based on semantics</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Ontology mapping indicates the semantic interconnection between the concepts of ontologies, while multi-domain ontology mapping is usually used to solve the semantic interconnection problem between domain ontologies. However, due to the differences in the definition approaches, there exists the heterogeneity among the domain ontologies to a certain extent. This paper proposes a probability-based and similarity-based ontology mapping algorithm, the purpose of which is to calculate the similarity between the concepts of the multi-domain ontology. Using the ESA algorithm based on Wikipedia and the principle that the similarity between the concepts with the same name equals 1, the paper proposes a new concept, ontology mapping association graph, to represent mapping results. The experiments show that the accuracy rate of the probability-based and similarity-based ontology mapping algorithm can reach 80% on both two Chinese test sets, namely, WordSimilarity-353 and Words-240. Compared with other algorithms, it does stand out on the aspect of accuracy.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Dynamic programming</subject><subject>Graphs</subject><subject>Heterogeneity</subject><subject>Interoperability</subject><subject>Knowledge</subject><subject>Knowledge representation</subject><subject>Language</subject><subject>Mapping</subject><subject>Online instruction</subject><subject>Ontology</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Semantic web</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Software</subject><subject>World Wide Web</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A6-i9eUwmSym-oOJG1yGTZMqUzsNkCu2_N2UEV67u65xz4SPkFuEeAdRDQpBVSQEVRagUPZyRBUrFqZKCn-ee56uqpLokVyltAUArphcE3ve7qaV-6GzbF0M_Dbthcyw6O45tvylqm4LP6yKFzvZT69I1uWjsLoWb37okX89Pn6tXuv54eVs9rqnjWE60El7VzopSIecovEetUTMJ3KuAoYRSy1pUzFlXe97kydfCg2faoay05UtyN-eOcfjehzSZ7bCPfX5pmMaKCUDJsgpnlYtDSjE0ZoxtZ-PRIJgTGDODMRmMOYExh-xhsydlbb8J8S_5f9MPSGplHw</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Song, Shengli</creator><creator>Zhang, Xiang</creator><creator>Qin, Guimin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6879-0027</orcidid></search><sort><creationdate>20171201</creationdate><title>Multi-domain ontology mapping based on semantics</title><author>Song, Shengli ; Zhang, Xiang ; Qin, Guimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-84d7bca46713314dd199192503d7e1e60695b482cacbd3f695db4d0d29c1589a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Dynamic programming</topic><topic>Graphs</topic><topic>Heterogeneity</topic><topic>Interoperability</topic><topic>Knowledge</topic><topic>Knowledge representation</topic><topic>Language</topic><topic>Mapping</topic><topic>Online instruction</topic><topic>Ontology</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Semantic web</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Software</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Shengli</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Qin, Guimin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Shengli</au><au>Zhang, Xiang</au><au>Qin, Guimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-domain ontology mapping based on semantics</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>20</volume><issue>4</issue><spage>3379</spage><epage>3391</epage><pages>3379-3391</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Ontology mapping indicates the semantic interconnection between the concepts of ontologies, while multi-domain ontology mapping is usually used to solve the semantic interconnection problem between domain ontologies. However, due to the differences in the definition approaches, there exists the heterogeneity among the domain ontologies to a certain extent. This paper proposes a probability-based and similarity-based ontology mapping algorithm, the purpose of which is to calculate the similarity between the concepts of the multi-domain ontology. Using the ESA algorithm based on Wikipedia and the principle that the similarity between the concepts with the same name equals 1, the paper proposes a new concept, ontology mapping association graph, to represent mapping results. The experiments show that the accuracy rate of the probability-based and similarity-based ontology mapping algorithm can reach 80% on both two Chinese test sets, namely, WordSimilarity-353 and Words-240. Compared with other algorithms, it does stand out on the aspect of accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-017-1087-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6879-0027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2017-12, Vol.20 (4), p.3379-3391
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918240152
source SpringerNature Journals; Proquest Central; ProQuest Central UK/Ireland
subjects Algorithms
Computer Communication Networks
Computer Science
Dynamic programming
Graphs
Heterogeneity
Interoperability
Knowledge
Knowledge representation
Language
Mapping
Online instruction
Ontology
Operating Systems
Processor Architectures
Semantic web
Semantics
Similarity
Software
World Wide Web
title Multi-domain ontology mapping based on semantics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-domain%20ontology%20mapping%20based%20on%20semantics&rft.jtitle=Cluster%20computing&rft.au=Song,%20Shengli&rft.date=2017-12-01&rft.volume=20&rft.issue=4&rft.spage=3379&rft.epage=3391&rft.pages=3379-3391&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-017-1087-x&rft_dat=%3Cproquest_cross%3E2918240152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918240152&rft_id=info:pmid/&rfr_iscdi=true