Improved eigensystem realization algorithm and its application on ocean platforms

Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2019-03, Vol.22 (Suppl 2), p.3643-3650
Hauptverfasser: Xin, Junfeng, Lei, Wang, Shixin, Li, Yongbo, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3650
container_issue Suppl 2
container_start_page 3643
container_title Cluster computing
container_volume 22
creator Xin, Junfeng
Lei, Wang
Shixin, Li
Yongbo, Zhang
description Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method.
doi_str_mv 10.1007/s10586-018-2213-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918230788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918230788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKs_wLeAz9FcNk3yKMVLoSBC30M2m6wpezNJhfrrTVnBJ2FgBs45M8MHwC3B9wRj8ZAI5nKFMJGIUsIQPgMLwgVDglfsvMysqEJycQmuUtpjjJWgagHeN_0Uxy_XQBdaN6Rjyq6H0ZkufJscxgGarh1jyB89NEMDQ07QTFMX7KyeyjozwKkz2Y-xT9fgwpsuuZvfvgS756fd-hVt314268ctsoyrjCojqa0oM6p2zYoq7iWvrfOcmEawZuUNkYJLaigj3ktbV5WtGy9qXCsuLFuCu3ltef_z4FLW-_EQh3JRU0UkZVhIWVxkdtk4phSd11MMvYlHTbA-gdMzOF3A6RM4jUuGzplUvEPr4t_m_0M_wh1ySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918230788</pqid></control><display><type>article</type><title>Improved eigensystem realization algorithm and its application on ocean platforms</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Xin, Junfeng ; Lei, Wang ; Shixin, Li ; Yongbo, Zhang</creator><creatorcontrib>Xin, Junfeng ; Lei, Wang ; Shixin, Li ; Yongbo, Zhang</creatorcontrib><description>Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-2213-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Eigenvalues ; Hankel matrices ; Impact loads ; Methods ; Operating Systems ; Parameter identification ; Processor Architectures ; Simulation</subject><ispartof>Cluster computing, 2019-03, Vol.22 (Suppl 2), p.3643-3650</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</citedby><cites>FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-018-2213-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918230788?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Xin, Junfeng</creatorcontrib><creatorcontrib>Lei, Wang</creatorcontrib><creatorcontrib>Shixin, Li</creatorcontrib><creatorcontrib>Yongbo, Zhang</creatorcontrib><title>Improved eigensystem realization algorithm and its application on ocean platforms</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Hankel matrices</subject><subject>Impact loads</subject><subject>Methods</subject><subject>Operating Systems</subject><subject>Parameter identification</subject><subject>Processor Architectures</subject><subject>Simulation</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFtLAzEQhYMoWKs_wLeAz9FcNk3yKMVLoSBC30M2m6wpezNJhfrrTVnBJ2FgBs45M8MHwC3B9wRj8ZAI5nKFMJGIUsIQPgMLwgVDglfsvMysqEJycQmuUtpjjJWgagHeN_0Uxy_XQBdaN6Rjyq6H0ZkufJscxgGarh1jyB89NEMDQ07QTFMX7KyeyjozwKkz2Y-xT9fgwpsuuZvfvgS756fd-hVt314268ctsoyrjCojqa0oM6p2zYoq7iWvrfOcmEawZuUNkYJLaigj3ktbV5WtGy9qXCsuLFuCu3ltef_z4FLW-_EQh3JRU0UkZVhIWVxkdtk4phSd11MMvYlHTbA-gdMzOF3A6RM4jUuGzplUvEPr4t_m_0M_wh1ySA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Xin, Junfeng</creator><creator>Lei, Wang</creator><creator>Shixin, Li</creator><creator>Yongbo, Zhang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190301</creationdate><title>Improved eigensystem realization algorithm and its application on ocean platforms</title><author>Xin, Junfeng ; Lei, Wang ; Shixin, Li ; Yongbo, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Hankel matrices</topic><topic>Impact loads</topic><topic>Methods</topic><topic>Operating Systems</topic><topic>Parameter identification</topic><topic>Processor Architectures</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Junfeng</creatorcontrib><creatorcontrib>Lei, Wang</creatorcontrib><creatorcontrib>Shixin, Li</creatorcontrib><creatorcontrib>Yongbo, Zhang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Junfeng</au><au>Lei, Wang</au><au>Shixin, Li</au><au>Yongbo, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved eigensystem realization algorithm and its application on ocean platforms</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 2</issue><spage>3643</spage><epage>3650</epage><pages>3643-3650</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-2213-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2019-03, Vol.22 (Suppl 2), p.3643-3650
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918230788
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Computer Communication Networks
Computer Science
Eigenvalues
Hankel matrices
Impact loads
Methods
Operating Systems
Parameter identification
Processor Architectures
Simulation
title Improved eigensystem realization algorithm and its application on ocean platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20eigensystem%20realization%20algorithm%20and%20its%20application%20on%20ocean%20platforms&rft.jtitle=Cluster%20computing&rft.au=Xin,%20Junfeng&rft.date=2019-03-01&rft.volume=22&rft.issue=Suppl%202&rft.spage=3643&rft.epage=3650&rft.pages=3643-3650&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-2213-0&rft_dat=%3Cproquest_cross%3E2918230788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918230788&rft_id=info:pmid/&rfr_iscdi=true