Improved eigensystem realization algorithm and its application on ocean platforms
Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2019-03, Vol.22 (Suppl 2), p.3643-3650 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3650 |
---|---|
container_issue | Suppl 2 |
container_start_page | 3643 |
container_title | Cluster computing |
container_volume | 22 |
creator | Xin, Junfeng Lei, Wang Shixin, Li Yongbo, Zhang |
description | Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method. |
doi_str_mv | 10.1007/s10586-018-2213-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918230788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918230788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKs_wLeAz9FcNk3yKMVLoSBC30M2m6wpezNJhfrrTVnBJ2FgBs45M8MHwC3B9wRj8ZAI5nKFMJGIUsIQPgMLwgVDglfsvMysqEJycQmuUtpjjJWgagHeN_0Uxy_XQBdaN6Rjyq6H0ZkufJscxgGarh1jyB89NEMDQ07QTFMX7KyeyjozwKkz2Y-xT9fgwpsuuZvfvgS756fd-hVt314268ctsoyrjCojqa0oM6p2zYoq7iWvrfOcmEawZuUNkYJLaigj3ktbV5WtGy9qXCsuLFuCu3ltef_z4FLW-_EQh3JRU0UkZVhIWVxkdtk4phSd11MMvYlHTbA-gdMzOF3A6RM4jUuGzplUvEPr4t_m_0M_wh1ySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918230788</pqid></control><display><type>article</type><title>Improved eigensystem realization algorithm and its application on ocean platforms</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Xin, Junfeng ; Lei, Wang ; Shixin, Li ; Yongbo, Zhang</creator><creatorcontrib>Xin, Junfeng ; Lei, Wang ; Shixin, Li ; Yongbo, Zhang</creatorcontrib><description>Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-2213-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Eigenvalues ; Hankel matrices ; Impact loads ; Methods ; Operating Systems ; Parameter identification ; Processor Architectures ; Simulation</subject><ispartof>Cluster computing, 2019-03, Vol.22 (Suppl 2), p.3643-3650</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</citedby><cites>FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-018-2213-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918230788?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Xin, Junfeng</creatorcontrib><creatorcontrib>Lei, Wang</creatorcontrib><creatorcontrib>Shixin, Li</creatorcontrib><creatorcontrib>Yongbo, Zhang</creatorcontrib><title>Improved eigensystem realization algorithm and its application on ocean platforms</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Hankel matrices</subject><subject>Impact loads</subject><subject>Methods</subject><subject>Operating Systems</subject><subject>Parameter identification</subject><subject>Processor Architectures</subject><subject>Simulation</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFtLAzEQhYMoWKs_wLeAz9FcNk3yKMVLoSBC30M2m6wpezNJhfrrTVnBJ2FgBs45M8MHwC3B9wRj8ZAI5nKFMJGIUsIQPgMLwgVDglfsvMysqEJycQmuUtpjjJWgagHeN_0Uxy_XQBdaN6Rjyq6H0ZkufJscxgGarh1jyB89NEMDQ07QTFMX7KyeyjozwKkz2Y-xT9fgwpsuuZvfvgS756fd-hVt314268ctsoyrjCojqa0oM6p2zYoq7iWvrfOcmEawZuUNkYJLaigj3ktbV5WtGy9qXCsuLFuCu3ltef_z4FLW-_EQh3JRU0UkZVhIWVxkdtk4phSd11MMvYlHTbA-gdMzOF3A6RM4jUuGzplUvEPr4t_m_0M_wh1ySA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Xin, Junfeng</creator><creator>Lei, Wang</creator><creator>Shixin, Li</creator><creator>Yongbo, Zhang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190301</creationdate><title>Improved eigensystem realization algorithm and its application on ocean platforms</title><author>Xin, Junfeng ; Lei, Wang ; Shixin, Li ; Yongbo, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4a82c423a9bed6295f85bcef51ad73d6fa187582a231ff8cb44cbdf7b0b957c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Hankel matrices</topic><topic>Impact loads</topic><topic>Methods</topic><topic>Operating Systems</topic><topic>Parameter identification</topic><topic>Processor Architectures</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Junfeng</creatorcontrib><creatorcontrib>Lei, Wang</creatorcontrib><creatorcontrib>Shixin, Li</creatorcontrib><creatorcontrib>Yongbo, Zhang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Junfeng</au><au>Lei, Wang</au><au>Shixin, Li</au><au>Yongbo, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved eigensystem realization algorithm and its application on ocean platforms</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 2</issue><spage>3643</spage><epage>3650</epage><pages>3643-3650</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Based on the matrix mapping theory, an improved eigensystem realization algorithm (ERA), called C/ERA, is proposed in this paper. It rebuilds a Hankel matrix by replacing all elements of each anti-subdiagonal with the arithmetic average of the elements along the anti-subdiagonal, and introduces the concept of using the Frobenius norm (L2-norm) to control the iterations number after implementing the SVD algorithm by the ERA method. With the data associated with a 5-DOF mass-spring-dashpot system and jacket-type platform under impact loading, it is demonstrated that C/ERA has a better capacity of de-noising, and a higher accuracy for low-order modes, and can identify more high-order modes than the ERA method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-2213-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2019-03, Vol.22 (Suppl 2), p.3643-3650 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918230788 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Computer Communication Networks Computer Science Eigenvalues Hankel matrices Impact loads Methods Operating Systems Parameter identification Processor Architectures Simulation |
title | Improved eigensystem realization algorithm and its application on ocean platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20eigensystem%20realization%20algorithm%20and%20its%20application%20on%20ocean%20platforms&rft.jtitle=Cluster%20computing&rft.au=Xin,%20Junfeng&rft.date=2019-03-01&rft.volume=22&rft.issue=Suppl%202&rft.spage=3643&rft.epage=3650&rft.pages=3643-3650&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-2213-0&rft_dat=%3Cproquest_cross%3E2918230788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918230788&rft_id=info:pmid/&rfr_iscdi=true |