Adaptive mining prediction model for content recommendation to coronary heart disease patients

This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2014-09, Vol.17 (3), p.881-891
Hauptverfasser: Kim, Jae-Kwon, Lee, Jong-Sik, Park, Dong-Kyun, Lim, Yong-Soo, Lee, Young-Ho, Jung, Eun-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 891
container_issue 3
container_start_page 881
container_title Cluster computing
container_volume 17
creator Kim, Jae-Kwon
Lee, Jong-Sik
Park, Dong-Kyun
Lim, Yong-Soo
Lee, Young-Ho
Jung, Eun-Young
description This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital.
doi_str_mv 10.1007/s10586-013-0308-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918214312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918214312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMsmmyx1L8BwUvejWEJFu3dJM1SQW_vdEKnjzNwPzem8cj5BLhGgHkTUYQatEA8gY4qAaPyAyF5I0ULT-uO69XqYQ8JWc5bwGgk6ybkdelM1MZPjwdhzCEDZ2Sd4MtQwx0jM7vaB8TtTEUHwpN3sZx9MGZH6DEekkxmPRJ37xJhbohe5M9nSpQBfmcnPRml_3F75yTl7vb59VDs366f1wt142tuUqjLGsZU4ASEEXrrWoZKmcsoFlIEKLFjnOnGAjnnLVW9SCM8a3wznWu53NydfCdUnzf-1z0Nu5TqC8161AxbDmySuGBsinmnHyvpzSMNb1G0N816kONutaov2vUWDXsoMmVDRuf_pz_F30BJGB2MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918214312</pqid></control><display><type>article</type><title>Adaptive mining prediction model for content recommendation to coronary heart disease patients</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kim, Jae-Kwon ; Lee, Jong-Sik ; Park, Dong-Kyun ; Lim, Yong-Soo ; Lee, Young-Ho ; Jung, Eun-Young</creator><creatorcontrib>Kim, Jae-Kwon ; Lee, Jong-Sik ; Park, Dong-Kyun ; Lim, Yong-Soo ; Lee, Young-Ho ; Jung, Eun-Young</creatorcontrib><description>This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-013-0308-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Cardiovascular disease ; Computer Communication Networks ; Computer Science ; Decision making ; Decision trees ; Heart diseases ; Neural networks ; Operating Systems ; Personal health ; Prediction models ; Processor Architectures ; Rule induction ; Statistical methods</subject><ispartof>Cluster computing, 2014-09, Vol.17 (3), p.881-891</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</citedby><cites>FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-013-0308-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918214312?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Kim, Jae-Kwon</creatorcontrib><creatorcontrib>Lee, Jong-Sik</creatorcontrib><creatorcontrib>Park, Dong-Kyun</creatorcontrib><creatorcontrib>Lim, Yong-Soo</creatorcontrib><creatorcontrib>Lee, Young-Ho</creatorcontrib><creatorcontrib>Jung, Eun-Young</creatorcontrib><title>Adaptive mining prediction model for content recommendation to coronary heart disease patients</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital.</description><subject>Cardiovascular disease</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Heart diseases</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Personal health</subject><subject>Prediction models</subject><subject>Processor Architectures</subject><subject>Rule induction</subject><subject>Statistical methods</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMsmmyx1L8BwUvejWEJFu3dJM1SQW_vdEKnjzNwPzem8cj5BLhGgHkTUYQatEA8gY4qAaPyAyF5I0ULT-uO69XqYQ8JWc5bwGgk6ybkdelM1MZPjwdhzCEDZ2Sd4MtQwx0jM7vaB8TtTEUHwpN3sZx9MGZH6DEekkxmPRJ37xJhbohe5M9nSpQBfmcnPRml_3F75yTl7vb59VDs366f1wt142tuUqjLGsZU4ASEEXrrWoZKmcsoFlIEKLFjnOnGAjnnLVW9SCM8a3wznWu53NydfCdUnzf-1z0Nu5TqC8161AxbDmySuGBsinmnHyvpzSMNb1G0N816kONutaov2vUWDXsoMmVDRuf_pz_F30BJGB2MA</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kim, Jae-Kwon</creator><creator>Lee, Jong-Sik</creator><creator>Park, Dong-Kyun</creator><creator>Lim, Yong-Soo</creator><creator>Lee, Young-Ho</creator><creator>Jung, Eun-Young</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140901</creationdate><title>Adaptive mining prediction model for content recommendation to coronary heart disease patients</title><author>Kim, Jae-Kwon ; Lee, Jong-Sik ; Park, Dong-Kyun ; Lim, Yong-Soo ; Lee, Young-Ho ; Jung, Eun-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cardiovascular disease</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Heart diseases</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Personal health</topic><topic>Prediction models</topic><topic>Processor Architectures</topic><topic>Rule induction</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae-Kwon</creatorcontrib><creatorcontrib>Lee, Jong-Sik</creatorcontrib><creatorcontrib>Park, Dong-Kyun</creatorcontrib><creatorcontrib>Lim, Yong-Soo</creatorcontrib><creatorcontrib>Lee, Young-Ho</creatorcontrib><creatorcontrib>Jung, Eun-Young</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae-Kwon</au><au>Lee, Jong-Sik</au><au>Park, Dong-Kyun</au><au>Lim, Yong-Soo</au><au>Lee, Young-Ho</au><au>Jung, Eun-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive mining prediction model for content recommendation to coronary heart disease patients</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>17</volume><issue>3</issue><spage>881</spage><epage>891</epage><pages>881-891</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10586-013-0308-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2014-09, Vol.17 (3), p.881-891
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918214312
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Cardiovascular disease
Computer Communication Networks
Computer Science
Decision making
Decision trees
Heart diseases
Neural networks
Operating Systems
Personal health
Prediction models
Processor Architectures
Rule induction
Statistical methods
title Adaptive mining prediction model for content recommendation to coronary heart disease patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20mining%20prediction%20model%20for%20content%20recommendation%20to%20coronary%20heart%20disease%20patients&rft.jtitle=Cluster%20computing&rft.au=Kim,%20Jae-Kwon&rft.date=2014-09-01&rft.volume=17&rft.issue=3&rft.spage=881&rft.epage=891&rft.pages=881-891&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-013-0308-1&rft_dat=%3Cproquest_cross%3E2918214312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918214312&rft_id=info:pmid/&rfr_iscdi=true