Adaptive mining prediction model for content recommendation to coronary heart disease patients
This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consis...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2014-09, Vol.17 (3), p.881-891 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | 3 |
container_start_page | 881 |
container_title | Cluster computing |
container_volume | 17 |
creator | Kim, Jae-Kwon Lee, Jong-Sik Park, Dong-Kyun Lim, Yong-Soo Lee, Young-Ho Jung, Eun-Young |
description | This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital. |
doi_str_mv | 10.1007/s10586-013-0308-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918214312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918214312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMsmmyx1L8BwUvejWEJFu3dJM1SQW_vdEKnjzNwPzem8cj5BLhGgHkTUYQatEA8gY4qAaPyAyF5I0ULT-uO69XqYQ8JWc5bwGgk6ybkdelM1MZPjwdhzCEDZ2Sd4MtQwx0jM7vaB8TtTEUHwpN3sZx9MGZH6DEekkxmPRJ37xJhbohe5M9nSpQBfmcnPRml_3F75yTl7vb59VDs366f1wt142tuUqjLGsZU4ASEEXrrWoZKmcsoFlIEKLFjnOnGAjnnLVW9SCM8a3wznWu53NydfCdUnzf-1z0Nu5TqC8161AxbDmySuGBsinmnHyvpzSMNb1G0N816kONutaov2vUWDXsoMmVDRuf_pz_F30BJGB2MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918214312</pqid></control><display><type>article</type><title>Adaptive mining prediction model for content recommendation to coronary heart disease patients</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kim, Jae-Kwon ; Lee, Jong-Sik ; Park, Dong-Kyun ; Lim, Yong-Soo ; Lee, Young-Ho ; Jung, Eun-Young</creator><creatorcontrib>Kim, Jae-Kwon ; Lee, Jong-Sik ; Park, Dong-Kyun ; Lim, Yong-Soo ; Lee, Young-Ho ; Jung, Eun-Young</creatorcontrib><description>This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-013-0308-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Cardiovascular disease ; Computer Communication Networks ; Computer Science ; Decision making ; Decision trees ; Heart diseases ; Neural networks ; Operating Systems ; Personal health ; Prediction models ; Processor Architectures ; Rule induction ; Statistical methods</subject><ispartof>Cluster computing, 2014-09, Vol.17 (3), p.881-891</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</citedby><cites>FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-013-0308-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918214312?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Kim, Jae-Kwon</creatorcontrib><creatorcontrib>Lee, Jong-Sik</creatorcontrib><creatorcontrib>Park, Dong-Kyun</creatorcontrib><creatorcontrib>Lim, Yong-Soo</creatorcontrib><creatorcontrib>Lee, Young-Ho</creatorcontrib><creatorcontrib>Jung, Eun-Young</creatorcontrib><title>Adaptive mining prediction model for content recommendation to coronary heart disease patients</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital.</description><subject>Cardiovascular disease</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Heart diseases</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Personal health</subject><subject>Prediction models</subject><subject>Processor Architectures</subject><subject>Rule induction</subject><subject>Statistical methods</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMsmmyx1L8BwUvejWEJFu3dJM1SQW_vdEKnjzNwPzem8cj5BLhGgHkTUYQatEA8gY4qAaPyAyF5I0ULT-uO69XqYQ8JWc5bwGgk6ybkdelM1MZPjwdhzCEDZ2Sd4MtQwx0jM7vaB8TtTEUHwpN3sZx9MGZH6DEekkxmPRJ37xJhbohe5M9nSpQBfmcnPRml_3F75yTl7vb59VDs366f1wt142tuUqjLGsZU4ASEEXrrWoZKmcsoFlIEKLFjnOnGAjnnLVW9SCM8a3wznWu53NydfCdUnzf-1z0Nu5TqC8161AxbDmySuGBsinmnHyvpzSMNb1G0N816kONutaov2vUWDXsoMmVDRuf_pz_F30BJGB2MA</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kim, Jae-Kwon</creator><creator>Lee, Jong-Sik</creator><creator>Park, Dong-Kyun</creator><creator>Lim, Yong-Soo</creator><creator>Lee, Young-Ho</creator><creator>Jung, Eun-Young</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140901</creationdate><title>Adaptive mining prediction model for content recommendation to coronary heart disease patients</title><author>Kim, Jae-Kwon ; Lee, Jong-Sik ; Park, Dong-Kyun ; Lim, Yong-Soo ; Lee, Young-Ho ; Jung, Eun-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8c2422801701154ec84218dac01a6705541933d8205dddccc8f05aae45edd9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cardiovascular disease</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Heart diseases</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Personal health</topic><topic>Prediction models</topic><topic>Processor Architectures</topic><topic>Rule induction</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae-Kwon</creatorcontrib><creatorcontrib>Lee, Jong-Sik</creatorcontrib><creatorcontrib>Park, Dong-Kyun</creatorcontrib><creatorcontrib>Lim, Yong-Soo</creatorcontrib><creatorcontrib>Lee, Young-Ho</creatorcontrib><creatorcontrib>Jung, Eun-Young</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae-Kwon</au><au>Lee, Jong-Sik</au><au>Park, Dong-Kyun</au><au>Lim, Yong-Soo</au><au>Lee, Young-Ho</au><au>Jung, Eun-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive mining prediction model for content recommendation to coronary heart disease patients</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>17</volume><issue>3</issue><spage>881</spage><epage>891</epage><pages>881-891</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>This paper proposes the Fuzzy Rule-based Adaptive Coronary Heart Disease Prediction Support Model (FbACHD_PSM), which gives content recommendation to coronary heart disease patients. The proposed model uses a mining technique validated by medical experts to provide recommendations. FbACHD_PSM consists of three parts for heart disease risk prediction. First, a fuzzy membership function is constructed using medical guidelines and statistical methods. Then, a decision-tree rule induction technique creates mining-based rules that are subjected to validation by medical experts. As the rules may not be medically suitable, the experts add rules that have been verified and delete inappropriate rules. Thirdly, using fuzzy inference based on Mamdani’s method, the model predicts the risk of heart disease. Based on this, final recommendations are provided to patients regarding normal living, nutrition control, exercise, and drugs. To implement our proposed model and evaluate its performance, we use a dataset from a single tertiary hospital.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10586-013-0308-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2014-09, Vol.17 (3), p.881-891 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918214312 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Cardiovascular disease Computer Communication Networks Computer Science Decision making Decision trees Heart diseases Neural networks Operating Systems Personal health Prediction models Processor Architectures Rule induction Statistical methods |
title | Adaptive mining prediction model for content recommendation to coronary heart disease patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20mining%20prediction%20model%20for%20content%20recommendation%20to%20coronary%20heart%20disease%20patients&rft.jtitle=Cluster%20computing&rft.au=Kim,%20Jae-Kwon&rft.date=2014-09-01&rft.volume=17&rft.issue=3&rft.spage=881&rft.epage=891&rft.pages=881-891&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-013-0308-1&rft_dat=%3Cproquest_cross%3E2918214312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918214312&rft_id=info:pmid/&rfr_iscdi=true |