ACCRS: autonomic based cloud computing resource scaling
A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2017-09, Vol.20 (3), p.2479-2488 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2488 |
---|---|
container_issue | 3 |
container_start_page | 2479 |
container_title | Cluster computing |
container_volume | 20 |
creator | Al-Sharif, Ziad A. Jararweh, Yaser Al-Dahoud, Ahmad Alawneh, Luay M. |
description | A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state. |
doi_str_mv | 10.1007/s10586-016-0682-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918214297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918214297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwueVzPZPL2VxRcUBB_nkGaT0tJuarJ78N87ZQVPHubBzPd9M3yEXAO9BUrVXQEqtKwpYEjNanlCZiBUUyvBm1PsG9wqLdQ5uShlSyk1ipkZUYu2fXu_r9w4pD7tN75auRK6yu_SiDntD-Ow6ddVDiWN2YeqeLfDwSU5i25XwtVvnZPPx4eP9rlevj69tItl7RuQQ81EE1cuBgkCP-C8C1FEA7ED77TyXBseWZCcdkZrz7RyPlBEBy6lY4Y3c3Iz6R5y-hpDGewW_-jxpGUGNAPOjEIUTCifUyk5RHvIm73L3xaoPfpjJ38s-mOP_liJHDZxCmL7dch_yv-TfgAH82br</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918214297</pqid></control><display><type>article</type><title>ACCRS: autonomic based cloud computing resource scaling</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Al-Sharif, Ziad A. ; Jararweh, Yaser ; Al-Dahoud, Ahmad ; Alawneh, Luay M.</creator><creatorcontrib>Al-Sharif, Ziad A. ; Jararweh, Yaser ; Al-Dahoud, Ahmad ; Alawneh, Luay M.</creatorcontrib><description>A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-016-0682-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cloud computing ; Computer Communication Networks ; Computer Science ; Decision analysis ; Equilibrium ; Fault detection ; Operating Systems ; Power consumption ; Processor Architectures ; Provisioning ; Quality of service ; Resource allocation ; Root cause analysis ; Workloads</subject><ispartof>Cluster computing, 2017-09, Vol.20 (3), p.2479-2488</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</citedby><cites>FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-016-0682-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918214297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Al-Sharif, Ziad A.</creatorcontrib><creatorcontrib>Jararweh, Yaser</creatorcontrib><creatorcontrib>Al-Dahoud, Ahmad</creatorcontrib><creatorcontrib>Alawneh, Luay M.</creatorcontrib><title>ACCRS: autonomic based cloud computing resource scaling</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Decision analysis</subject><subject>Equilibrium</subject><subject>Fault detection</subject><subject>Operating Systems</subject><subject>Power consumption</subject><subject>Processor Architectures</subject><subject>Provisioning</subject><subject>Quality of service</subject><subject>Resource allocation</subject><subject>Root cause analysis</subject><subject>Workloads</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLAzEQDqJgrf4AbwueVzPZPL2VxRcUBB_nkGaT0tJuarJ78N87ZQVPHubBzPd9M3yEXAO9BUrVXQEqtKwpYEjNanlCZiBUUyvBm1PsG9wqLdQ5uShlSyk1ipkZUYu2fXu_r9w4pD7tN75auRK6yu_SiDntD-Ow6ddVDiWN2YeqeLfDwSU5i25XwtVvnZPPx4eP9rlevj69tItl7RuQQ81EE1cuBgkCP-C8C1FEA7ED77TyXBseWZCcdkZrz7RyPlBEBy6lY4Y3c3Iz6R5y-hpDGewW_-jxpGUGNAPOjEIUTCifUyk5RHvIm73L3xaoPfpjJ38s-mOP_liJHDZxCmL7dch_yv-TfgAH82br</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Al-Sharif, Ziad A.</creator><creator>Jararweh, Yaser</creator><creator>Al-Dahoud, Ahmad</creator><creator>Alawneh, Luay M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170901</creationdate><title>ACCRS: autonomic based cloud computing resource scaling</title><author>Al-Sharif, Ziad A. ; Jararweh, Yaser ; Al-Dahoud, Ahmad ; Alawneh, Luay M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Decision analysis</topic><topic>Equilibrium</topic><topic>Fault detection</topic><topic>Operating Systems</topic><topic>Power consumption</topic><topic>Processor Architectures</topic><topic>Provisioning</topic><topic>Quality of service</topic><topic>Resource allocation</topic><topic>Root cause analysis</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Sharif, Ziad A.</creatorcontrib><creatorcontrib>Jararweh, Yaser</creatorcontrib><creatorcontrib>Al-Dahoud, Ahmad</creatorcontrib><creatorcontrib>Alawneh, Luay M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Sharif, Ziad A.</au><au>Jararweh, Yaser</au><au>Al-Dahoud, Ahmad</au><au>Alawneh, Luay M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCRS: autonomic based cloud computing resource scaling</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>20</volume><issue>3</issue><spage>2479</spage><epage>2488</epage><pages>2479-2488</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-016-0682-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2017-09, Vol.20 (3), p.2479-2488 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918214297 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Cloud computing Computer Communication Networks Computer Science Decision analysis Equilibrium Fault detection Operating Systems Power consumption Processor Architectures Provisioning Quality of service Resource allocation Root cause analysis Workloads |
title | ACCRS: autonomic based cloud computing resource scaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCRS:%20autonomic%20based%20cloud%20computing%20resource%20scaling&rft.jtitle=Cluster%20computing&rft.au=Al-Sharif,%20Ziad%20A.&rft.date=2017-09-01&rft.volume=20&rft.issue=3&rft.spage=2479&rft.epage=2488&rft.pages=2479-2488&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-016-0682-6&rft_dat=%3Cproquest_cross%3E2918214297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918214297&rft_id=info:pmid/&rfr_iscdi=true |