ACCRS: autonomic based cloud computing resource scaling

A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2017-09, Vol.20 (3), p.2479-2488
Hauptverfasser: Al-Sharif, Ziad A., Jararweh, Yaser, Al-Dahoud, Ahmad, Alawneh, Luay M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2488
container_issue 3
container_start_page 2479
container_title Cluster computing
container_volume 20
creator Al-Sharif, Ziad A.
Jararweh, Yaser
Al-Dahoud, Ahmad
Alawneh, Luay M.
description A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state.
doi_str_mv 10.1007/s10586-016-0682-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918214297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918214297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwueVzPZPL2VxRcUBB_nkGaT0tJuarJ78N87ZQVPHubBzPd9M3yEXAO9BUrVXQEqtKwpYEjNanlCZiBUUyvBm1PsG9wqLdQ5uShlSyk1ipkZUYu2fXu_r9w4pD7tN75auRK6yu_SiDntD-Ow6ddVDiWN2YeqeLfDwSU5i25XwtVvnZPPx4eP9rlevj69tItl7RuQQ81EE1cuBgkCP-C8C1FEA7ED77TyXBseWZCcdkZrz7RyPlBEBy6lY4Y3c3Iz6R5y-hpDGewW_-jxpGUGNAPOjEIUTCifUyk5RHvIm73L3xaoPfpjJ38s-mOP_liJHDZxCmL7dch_yv-TfgAH82br</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918214297</pqid></control><display><type>article</type><title>ACCRS: autonomic based cloud computing resource scaling</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Al-Sharif, Ziad A. ; Jararweh, Yaser ; Al-Dahoud, Ahmad ; Alawneh, Luay M.</creator><creatorcontrib>Al-Sharif, Ziad A. ; Jararweh, Yaser ; Al-Dahoud, Ahmad ; Alawneh, Luay M.</creatorcontrib><description>A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-016-0682-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cloud computing ; Computer Communication Networks ; Computer Science ; Decision analysis ; Equilibrium ; Fault detection ; Operating Systems ; Power consumption ; Processor Architectures ; Provisioning ; Quality of service ; Resource allocation ; Root cause analysis ; Workloads</subject><ispartof>Cluster computing, 2017-09, Vol.20 (3), p.2479-2488</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</citedby><cites>FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-016-0682-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918214297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Al-Sharif, Ziad A.</creatorcontrib><creatorcontrib>Jararweh, Yaser</creatorcontrib><creatorcontrib>Al-Dahoud, Ahmad</creatorcontrib><creatorcontrib>Alawneh, Luay M.</creatorcontrib><title>ACCRS: autonomic based cloud computing resource scaling</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Decision analysis</subject><subject>Equilibrium</subject><subject>Fault detection</subject><subject>Operating Systems</subject><subject>Power consumption</subject><subject>Processor Architectures</subject><subject>Provisioning</subject><subject>Quality of service</subject><subject>Resource allocation</subject><subject>Root cause analysis</subject><subject>Workloads</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLAzEQDqJgrf4AbwueVzPZPL2VxRcUBB_nkGaT0tJuarJ78N87ZQVPHubBzPd9M3yEXAO9BUrVXQEqtKwpYEjNanlCZiBUUyvBm1PsG9wqLdQ5uShlSyk1ipkZUYu2fXu_r9w4pD7tN75auRK6yu_SiDntD-Ow6ddVDiWN2YeqeLfDwSU5i25XwtVvnZPPx4eP9rlevj69tItl7RuQQ81EE1cuBgkCP-C8C1FEA7ED77TyXBseWZCcdkZrz7RyPlBEBy6lY4Y3c3Iz6R5y-hpDGewW_-jxpGUGNAPOjEIUTCifUyk5RHvIm73L3xaoPfpjJ38s-mOP_liJHDZxCmL7dch_yv-TfgAH82br</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Al-Sharif, Ziad A.</creator><creator>Jararweh, Yaser</creator><creator>Al-Dahoud, Ahmad</creator><creator>Alawneh, Luay M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170901</creationdate><title>ACCRS: autonomic based cloud computing resource scaling</title><author>Al-Sharif, Ziad A. ; Jararweh, Yaser ; Al-Dahoud, Ahmad ; Alawneh, Luay M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-253fbafe61513844def5f91fd1ca87c4894f2e640d988c287ace0e61e466a2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Decision analysis</topic><topic>Equilibrium</topic><topic>Fault detection</topic><topic>Operating Systems</topic><topic>Power consumption</topic><topic>Processor Architectures</topic><topic>Provisioning</topic><topic>Quality of service</topic><topic>Resource allocation</topic><topic>Root cause analysis</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Sharif, Ziad A.</creatorcontrib><creatorcontrib>Jararweh, Yaser</creatorcontrib><creatorcontrib>Al-Dahoud, Ahmad</creatorcontrib><creatorcontrib>Alawneh, Luay M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Sharif, Ziad A.</au><au>Jararweh, Yaser</au><au>Al-Dahoud, Ahmad</au><au>Alawneh, Luay M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCRS: autonomic based cloud computing resource scaling</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>20</volume><issue>3</issue><spage>2479</spage><epage>2488</epage><pages>2479-2488</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>A cloud computing model gives cloud service providers the ability to retain multiple workloads on a single physical system. However, efficient resource provisioning and possible system fault management in the cloud can be a challenge. Early fault detection can provide room to recover from potential faults before impacting QoS. Current static techniques of fault management in computing systems are not satisfactory enough to safeguard the QoS requested by cloud users. Thus, new smart techniques are needed. This paper presents the ACCRS framework for cloud computing infrastructures to advance system’s utilization level, reduce cost and power consumption and fulfil SLAs. The ACCRS framework employs Autonomic Computing basic components which includes state monitoring, planning, decision making, fault predication, detection, and root cause analysis for recovery actions to improve system’s reliability, availability, and utilization level by scaling resources in response to changes in the cloud system state.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-016-0682-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2017-09, Vol.20 (3), p.2479-2488
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918214297
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Cloud computing
Computer Communication Networks
Computer Science
Decision analysis
Equilibrium
Fault detection
Operating Systems
Power consumption
Processor Architectures
Provisioning
Quality of service
Resource allocation
Root cause analysis
Workloads
title ACCRS: autonomic based cloud computing resource scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCRS:%20autonomic%20based%20cloud%20computing%20resource%20scaling&rft.jtitle=Cluster%20computing&rft.au=Al-Sharif,%20Ziad%20A.&rft.date=2017-09-01&rft.volume=20&rft.issue=3&rft.spage=2479&rft.epage=2488&rft.pages=2479-2488&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-016-0682-6&rft_dat=%3Cproquest_cross%3E2918214297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918214297&rft_id=info:pmid/&rfr_iscdi=true