Coded downlink MIMO MC-CDMA system for cognitive radio network: performance results

In this letter, the error-rate (ER) performance of multiple input and multiple output multi-carrier code-division-multiple-access (MIMO MC-CDMA) is evaluated with the aid of cognitive radio network (CRN). MIMO is proven to be useful for high data rate application. MC-CDMA is used to accommodate high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2019-07, Vol.22 (Suppl 4), p.8371-8378
Hauptverfasser: Rammyaa, B., Vishvaksenan, K. S., Poobal, Sumathi, Krishnan, M. Mohana Mouli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8378
container_issue Suppl 4
container_start_page 8371
container_title Cluster computing
container_volume 22
creator Rammyaa, B.
Vishvaksenan, K. S.
Poobal, Sumathi
Krishnan, M. Mohana Mouli
description In this letter, the error-rate (ER) performance of multiple input and multiple output multi-carrier code-division-multiple-access (MIMO MC-CDMA) is evaluated with the aid of cognitive radio network (CRN). MIMO is proven to be useful for high data rate application. MC-CDMA is used to accommodate higher number of user by eliminating channel impairments. CRN is suggested for 5G network to offer higher bandwidth by exposing idle spectrum. Multi-carrier modulation is processed inverse fast-Fourier transform at transmitter and demodulation at each receiver using fast-Fourier transform. Multi-carrier technique is introduced to obtain bandwidth efficiency and overcome the problem of frequency selectivity. At each mobile station, we estimate user’s information using MMSE based iterative algorithm. Further; the system performance is tested using channel encoder. We structure channel encoder using turbo code which is designed with the help of two convolutional encoder. The input information is interleaved using random interleaver and is fed to second convolutional encoder. We create puncturing matrix using input information and output of two convolutional encoders. Then we puncture parity bit information to obtain necessary code rate. Further, we decode and estimate information using iterative decoder which ensure higher performance with lower signal-to-noise ratio. It is vindicated from simulations that CRN based MIMO MC-CDMA system with iterative decoder swell better ER while ensuring higher data rate for downlink signal transmission.
doi_str_mv 10.1007/s10586-018-1815-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918214050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918214050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f284420082b82f14be788a92b8cba195bb51476c41890560916c070e816054d53</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEqXwANwscQ7MOHbscKvCVqlRD8DZyuJU6RIXO6Xt2-MqSJw4zYz-ZaSPkFuEewSQDx5BqCQCVBEqFNHhjIxQyDiSgsfnYY-DKpWQl-TK-yUApJKlI_Ke2drUtLb7bt12K5pP8znNsyh7yifUH31vNrSxjlZ20bV9-22oK-rW0s70e-tWj3RrXNA3RVcFyfjduvfX5KIp1t7c_M4x-Xx5_sjeotn8dZpNZlEVY9JHDVOcMwDFSsUa5KWRShVpuKqywFSUpUAuk4qjSkEkkGJSgQSjMAHBaxGPyd3Qu3X2a2d8r5d257rwUrMUFUMOAoILB1flrPfONHrr2k3hjhpBn9jpgZ0O7PSJnT6EDBsyPni7hXF_zf-HfgDd62_y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918214050</pqid></control><display><type>article</type><title>Coded downlink MIMO MC-CDMA system for cognitive radio network: performance results</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Rammyaa, B. ; Vishvaksenan, K. S. ; Poobal, Sumathi ; Krishnan, M. Mohana Mouli</creator><creatorcontrib>Rammyaa, B. ; Vishvaksenan, K. S. ; Poobal, Sumathi ; Krishnan, M. Mohana Mouli</creatorcontrib><description>In this letter, the error-rate (ER) performance of multiple input and multiple output multi-carrier code-division-multiple-access (MIMO MC-CDMA) is evaluated with the aid of cognitive radio network (CRN). MIMO is proven to be useful for high data rate application. MC-CDMA is used to accommodate higher number of user by eliminating channel impairments. CRN is suggested for 5G network to offer higher bandwidth by exposing idle spectrum. Multi-carrier modulation is processed inverse fast-Fourier transform at transmitter and demodulation at each receiver using fast-Fourier transform. Multi-carrier technique is introduced to obtain bandwidth efficiency and overcome the problem of frequency selectivity. At each mobile station, we estimate user’s information using MMSE based iterative algorithm. Further; the system performance is tested using channel encoder. We structure channel encoder using turbo code which is designed with the help of two convolutional encoder. The input information is interleaved using random interleaver and is fed to second convolutional encoder. We create puncturing matrix using input information and output of two convolutional encoders. Then we puncture parity bit information to obtain necessary code rate. Further, we decode and estimate information using iterative decoder which ensure higher performance with lower signal-to-noise ratio. It is vindicated from simulations that CRN based MIMO MC-CDMA system with iterative decoder swell better ER while ensuring higher data rate for downlink signal transmission.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-1815-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Antennas ; Bandwidths ; Code Division Multiple Access ; Coders ; Cognitive radio ; Computer Communication Networks ; Computer Science ; Demodulation ; Design ; Downlinking ; Fast Fourier transformations ; Iterative algorithms ; MIMO communication ; Operating Systems ; Processor Architectures ; Receivers &amp; amplifiers ; Sensors ; Signal to noise ratio ; Signal transmission ; Simulation ; Spectrum allocation ; Turbo codes</subject><ispartof>Cluster computing, 2019-07, Vol.22 (Suppl 4), p.8371-8378</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f284420082b82f14be788a92b8cba195bb51476c41890560916c070e816054d53</citedby><cites>FETCH-LOGICAL-c316t-f284420082b82f14be788a92b8cba195bb51476c41890560916c070e816054d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-018-1815-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918214050?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Rammyaa, B.</creatorcontrib><creatorcontrib>Vishvaksenan, K. S.</creatorcontrib><creatorcontrib>Poobal, Sumathi</creatorcontrib><creatorcontrib>Krishnan, M. Mohana Mouli</creatorcontrib><title>Coded downlink MIMO MC-CDMA system for cognitive radio network: performance results</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>In this letter, the error-rate (ER) performance of multiple input and multiple output multi-carrier code-division-multiple-access (MIMO MC-CDMA) is evaluated with the aid of cognitive radio network (CRN). MIMO is proven to be useful for high data rate application. MC-CDMA is used to accommodate higher number of user by eliminating channel impairments. CRN is suggested for 5G network to offer higher bandwidth by exposing idle spectrum. Multi-carrier modulation is processed inverse fast-Fourier transform at transmitter and demodulation at each receiver using fast-Fourier transform. Multi-carrier technique is introduced to obtain bandwidth efficiency and overcome the problem of frequency selectivity. At each mobile station, we estimate user’s information using MMSE based iterative algorithm. Further; the system performance is tested using channel encoder. We structure channel encoder using turbo code which is designed with the help of two convolutional encoder. The input information is interleaved using random interleaver and is fed to second convolutional encoder. We create puncturing matrix using input information and output of two convolutional encoders. Then we puncture parity bit information to obtain necessary code rate. Further, we decode and estimate information using iterative decoder which ensure higher performance with lower signal-to-noise ratio. It is vindicated from simulations that CRN based MIMO MC-CDMA system with iterative decoder swell better ER while ensuring higher data rate for downlink signal transmission.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Code Division Multiple Access</subject><subject>Coders</subject><subject>Cognitive radio</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Demodulation</subject><subject>Design</subject><subject>Downlinking</subject><subject>Fast Fourier transformations</subject><subject>Iterative algorithms</subject><subject>MIMO communication</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Receivers &amp; amplifiers</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Signal transmission</subject><subject>Simulation</subject><subject>Spectrum allocation</subject><subject>Turbo codes</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMlOwzAQhi0EEqXwANwscQ7MOHbscKvCVqlRD8DZyuJU6RIXO6Xt2-MqSJw4zYz-ZaSPkFuEewSQDx5BqCQCVBEqFNHhjIxQyDiSgsfnYY-DKpWQl-TK-yUApJKlI_Ke2drUtLb7bt12K5pP8znNsyh7yifUH31vNrSxjlZ20bV9-22oK-rW0s70e-tWj3RrXNA3RVcFyfjduvfX5KIp1t7c_M4x-Xx5_sjeotn8dZpNZlEVY9JHDVOcMwDFSsUa5KWRShVpuKqywFSUpUAuk4qjSkEkkGJSgQSjMAHBaxGPyd3Qu3X2a2d8r5d257rwUrMUFUMOAoILB1flrPfONHrr2k3hjhpBn9jpgZ0O7PSJnT6EDBsyPni7hXF_zf-HfgDd62_y</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Rammyaa, B.</creator><creator>Vishvaksenan, K. S.</creator><creator>Poobal, Sumathi</creator><creator>Krishnan, M. Mohana Mouli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190701</creationdate><title>Coded downlink MIMO MC-CDMA system for cognitive radio network: performance results</title><author>Rammyaa, B. ; Vishvaksenan, K. S. ; Poobal, Sumathi ; Krishnan, M. Mohana Mouli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f284420082b82f14be788a92b8cba195bb51476c41890560916c070e816054d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Code Division Multiple Access</topic><topic>Coders</topic><topic>Cognitive radio</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Demodulation</topic><topic>Design</topic><topic>Downlinking</topic><topic>Fast Fourier transformations</topic><topic>Iterative algorithms</topic><topic>MIMO communication</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Receivers &amp; amplifiers</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Signal transmission</topic><topic>Simulation</topic><topic>Spectrum allocation</topic><topic>Turbo codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rammyaa, B.</creatorcontrib><creatorcontrib>Vishvaksenan, K. S.</creatorcontrib><creatorcontrib>Poobal, Sumathi</creatorcontrib><creatorcontrib>Krishnan, M. Mohana Mouli</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rammyaa, B.</au><au>Vishvaksenan, K. S.</au><au>Poobal, Sumathi</au><au>Krishnan, M. Mohana Mouli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coded downlink MIMO MC-CDMA system for cognitive radio network: performance results</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 4</issue><spage>8371</spage><epage>8378</epage><pages>8371-8378</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>In this letter, the error-rate (ER) performance of multiple input and multiple output multi-carrier code-division-multiple-access (MIMO MC-CDMA) is evaluated with the aid of cognitive radio network (CRN). MIMO is proven to be useful for high data rate application. MC-CDMA is used to accommodate higher number of user by eliminating channel impairments. CRN is suggested for 5G network to offer higher bandwidth by exposing idle spectrum. Multi-carrier modulation is processed inverse fast-Fourier transform at transmitter and demodulation at each receiver using fast-Fourier transform. Multi-carrier technique is introduced to obtain bandwidth efficiency and overcome the problem of frequency selectivity. At each mobile station, we estimate user’s information using MMSE based iterative algorithm. Further; the system performance is tested using channel encoder. We structure channel encoder using turbo code which is designed with the help of two convolutional encoder. The input information is interleaved using random interleaver and is fed to second convolutional encoder. We create puncturing matrix using input information and output of two convolutional encoders. Then we puncture parity bit information to obtain necessary code rate. Further, we decode and estimate information using iterative decoder which ensure higher performance with lower signal-to-noise ratio. It is vindicated from simulations that CRN based MIMO MC-CDMA system with iterative decoder swell better ER while ensuring higher data rate for downlink signal transmission.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-1815-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2019-07, Vol.22 (Suppl 4), p.8371-8378
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918214050
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Antennas
Bandwidths
Code Division Multiple Access
Coders
Cognitive radio
Computer Communication Networks
Computer Science
Demodulation
Design
Downlinking
Fast Fourier transformations
Iterative algorithms
MIMO communication
Operating Systems
Processor Architectures
Receivers & amplifiers
Sensors
Signal to noise ratio
Signal transmission
Simulation
Spectrum allocation
Turbo codes
title Coded downlink MIMO MC-CDMA system for cognitive radio network: performance results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coded%20downlink%20MIMO%20MC-CDMA%20system%20for%20cognitive%20radio%20network:%20performance%20results&rft.jtitle=Cluster%20computing&rft.au=Rammyaa,%20B.&rft.date=2019-07-01&rft.volume=22&rft.issue=Suppl%204&rft.spage=8371&rft.epage=8378&rft.pages=8371-8378&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-1815-x&rft_dat=%3Cproquest_cross%3E2918214050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918214050&rft_id=info:pmid/&rfr_iscdi=true