Parametrized topological complexity of collision-free motion planning in the plane
Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametri...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2022-10, Vol.90 (10), p.999-1015 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1015 |
---|---|
container_issue | 10 |
container_start_page | 999 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 90 |
creator | Cohen, Daniel C. Farber, Michael Weinberger, Shmuel |
description | Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [
3
] (SIAM J. Appl. Algebra Geom.
5
, 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog. |
doi_str_mv | 10.1007/s10472-022-09801-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918202861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729362173</galeid><sourcerecordid>A729362173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8Fz12TSZs0x2XxCxYU0XNIs9M1S5vUpAuuv95oBW9OGGYmvM8kvFl2ScmCEiKuIyWlgIJASlkTWvCjbEYrwQpRCnKcekKhgLJkp9lZjDtCiOQ1n2XPTzroHsdgP3GTj37wnd9ao7vc-H7o8MOOh9y3aeo6G613RRsQ896Pqc-HTjtn3Ta3Lh_f8GfG8-yk1V3Ei986z15vb15W98X68e5htVwXpiQwFloCtIhC1yiM1BUThlQg25LLsmlAVAhVQ7mskJQNY5CCNzWaikPDNxzZPLua9g7Bv-8xjmrn98GlJxVIWgOBmtOkWkyqre5QWdf6MWiTzgZ7a7zD1qb7pQDJOFDBEgATYIKPMWCrhmB7HQ6KEvVttprMVsls9WO24gliExST2G0x_P3lH-oLy8eB0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918202861</pqid></control><display><type>article</type><title>Parametrized topological complexity of collision-free motion planning in the plane</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Cohen, Daniel C. ; Farber, Michael ; Weinberger, Shmuel</creator><creatorcontrib>Cohen, Daniel C. ; Farber, Michael ; Weinberger, Shmuel</creatorcontrib><description>Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [
3
] (SIAM J. Appl. Algebra Geom.
5
, 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-022-09801-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Artificial Intelligence ; Collision avoidance ; Complex Systems ; Computer Science ; Mathematics ; Motion planning ; Obstacle avoidance ; Parameterization ; Planning ; Robotics ; Robots ; Submarines ; Topology</subject><ispartof>Annals of mathematics and artificial intelligence, 2022-10, Vol.90 (10), p.999-1015</ispartof><rights>The Authors 2022. corrected publication 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Authors 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</citedby><cites>FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</cites><orcidid>0000-0002-5845-2523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-022-09801-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918202861?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><creatorcontrib>Weinberger, Shmuel</creatorcontrib><title>Parametrized topological complexity of collision-free motion planning in the plane</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [
3
] (SIAM J. Appl. Algebra Geom.
5
, 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Collision avoidance</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Motion planning</subject><subject>Obstacle avoidance</subject><subject>Parameterization</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robots</subject><subject>Submarines</subject><subject>Topology</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhosouK7-AU8Fz12TSZs0x2XxCxYU0XNIs9M1S5vUpAuuv95oBW9OGGYmvM8kvFl2ScmCEiKuIyWlgIJASlkTWvCjbEYrwQpRCnKcekKhgLJkp9lZjDtCiOQ1n2XPTzroHsdgP3GTj37wnd9ao7vc-H7o8MOOh9y3aeo6G613RRsQ896Pqc-HTjtn3Ta3Lh_f8GfG8-yk1V3Ei986z15vb15W98X68e5htVwXpiQwFloCtIhC1yiM1BUThlQg25LLsmlAVAhVQ7mskJQNY5CCNzWaikPDNxzZPLua9g7Bv-8xjmrn98GlJxVIWgOBmtOkWkyqre5QWdf6MWiTzgZ7a7zD1qb7pQDJOFDBEgATYIKPMWCrhmB7HQ6KEvVttprMVsls9WO24gliExST2G0x_P3lH-oLy8eB0Q</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Cohen, Daniel C.</creator><creator>Farber, Michael</creator><creator>Weinberger, Shmuel</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5845-2523</orcidid></search><sort><creationdate>20221001</creationdate><title>Parametrized topological complexity of collision-free motion planning in the plane</title><author>Cohen, Daniel C. ; Farber, Michael ; Weinberger, Shmuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Collision avoidance</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Motion planning</topic><topic>Obstacle avoidance</topic><topic>Parameterization</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robots</topic><topic>Submarines</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><creatorcontrib>Weinberger, Shmuel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Daniel C.</au><au>Farber, Michael</au><au>Weinberger, Shmuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametrized topological complexity of collision-free motion planning in the plane</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>90</volume><issue>10</issue><spage>999</spage><epage>1015</epage><pages>999-1015</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [
3
] (SIAM J. Appl. Algebra Geom.
5
, 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10472-022-09801-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5845-2523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 2022-10, Vol.90 (10), p.999-1015 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_proquest_journals_2918202861 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algebra Algorithms Analysis Artificial Intelligence Collision avoidance Complex Systems Computer Science Mathematics Motion planning Obstacle avoidance Parameterization Planning Robotics Robots Submarines Topology |
title | Parametrized topological complexity of collision-free motion planning in the plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametrized%20topological%20complexity%20of%20collision-free%20motion%20planning%20in%20the%20plane&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Cohen,%20Daniel%20C.&rft.date=2022-10-01&rft.volume=90&rft.issue=10&rft.spage=999&rft.epage=1015&rft.pages=999-1015&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-022-09801-6&rft_dat=%3Cgale_proqu%3EA729362173%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918202861&rft_id=info:pmid/&rft_galeid=A729362173&rfr_iscdi=true |