Parametrized topological complexity of collision-free motion planning in the plane

Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence 2022-10, Vol.90 (10), p.999-1015
Hauptverfasser: Cohen, Daniel C., Farber, Michael, Weinberger, Shmuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 10
container_start_page 999
container_title Annals of mathematics and artificial intelligence
container_volume 90
creator Cohen, Daniel C.
Farber, Michael
Weinberger, Shmuel
description Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [ 3 ] (SIAM J. Appl. Algebra Geom. 5 , 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.
doi_str_mv 10.1007/s10472-022-09801-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918202861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729362173</galeid><sourcerecordid>A729362173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8Fz12TSZs0x2XxCxYU0XNIs9M1S5vUpAuuv95oBW9OGGYmvM8kvFl2ScmCEiKuIyWlgIJASlkTWvCjbEYrwQpRCnKcekKhgLJkp9lZjDtCiOQ1n2XPTzroHsdgP3GTj37wnd9ao7vc-H7o8MOOh9y3aeo6G613RRsQ896Pqc-HTjtn3Ta3Lh_f8GfG8-yk1V3Ei986z15vb15W98X68e5htVwXpiQwFloCtIhC1yiM1BUThlQg25LLsmlAVAhVQ7mskJQNY5CCNzWaikPDNxzZPLua9g7Bv-8xjmrn98GlJxVIWgOBmtOkWkyqre5QWdf6MWiTzgZ7a7zD1qb7pQDJOFDBEgATYIKPMWCrhmB7HQ6KEvVttprMVsls9WO24gliExST2G0x_P3lH-oLy8eB0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918202861</pqid></control><display><type>article</type><title>Parametrized topological complexity of collision-free motion planning in the plane</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Cohen, Daniel C. ; Farber, Michael ; Weinberger, Shmuel</creator><creatorcontrib>Cohen, Daniel C. ; Farber, Michael ; Weinberger, Shmuel</creatorcontrib><description>Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [ 3 ] (SIAM J. Appl. Algebra Geom. 5 , 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-022-09801-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Artificial Intelligence ; Collision avoidance ; Complex Systems ; Computer Science ; Mathematics ; Motion planning ; Obstacle avoidance ; Parameterization ; Planning ; Robotics ; Robots ; Submarines ; Topology</subject><ispartof>Annals of mathematics and artificial intelligence, 2022-10, Vol.90 (10), p.999-1015</ispartof><rights>The Authors 2022. corrected publication 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Authors 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</citedby><cites>FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</cites><orcidid>0000-0002-5845-2523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-022-09801-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918202861?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><creatorcontrib>Weinberger, Shmuel</creatorcontrib><title>Parametrized topological complexity of collision-free motion planning in the plane</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [ 3 ] (SIAM J. Appl. Algebra Geom. 5 , 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Collision avoidance</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Motion planning</subject><subject>Obstacle avoidance</subject><subject>Parameterization</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robots</subject><subject>Submarines</subject><subject>Topology</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhosouK7-AU8Fz12TSZs0x2XxCxYU0XNIs9M1S5vUpAuuv95oBW9OGGYmvM8kvFl2ScmCEiKuIyWlgIJASlkTWvCjbEYrwQpRCnKcekKhgLJkp9lZjDtCiOQ1n2XPTzroHsdgP3GTj37wnd9ao7vc-H7o8MOOh9y3aeo6G613RRsQ896Pqc-HTjtn3Ta3Lh_f8GfG8-yk1V3Ei986z15vb15W98X68e5htVwXpiQwFloCtIhC1yiM1BUThlQg25LLsmlAVAhVQ7mskJQNY5CCNzWaikPDNxzZPLua9g7Bv-8xjmrn98GlJxVIWgOBmtOkWkyqre5QWdf6MWiTzgZ7a7zD1qb7pQDJOFDBEgATYIKPMWCrhmB7HQ6KEvVttprMVsls9WO24gliExST2G0x_P3lH-oLy8eB0Q</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Cohen, Daniel C.</creator><creator>Farber, Michael</creator><creator>Weinberger, Shmuel</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5845-2523</orcidid></search><sort><creationdate>20221001</creationdate><title>Parametrized topological complexity of collision-free motion planning in the plane</title><author>Cohen, Daniel C. ; Farber, Michael ; Weinberger, Shmuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a922fee7a8e7c9a537c0529f4694bb275e25b1695e04b3322226b8ec562b6d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Collision avoidance</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Motion planning</topic><topic>Obstacle avoidance</topic><topic>Parameterization</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robots</topic><topic>Submarines</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Daniel C.</creatorcontrib><creatorcontrib>Farber, Michael</creatorcontrib><creatorcontrib>Weinberger, Shmuel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Daniel C.</au><au>Farber, Michael</au><au>Weinberger, Shmuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametrized topological complexity of collision-free motion planning in the plane</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>90</volume><issue>10</issue><spage>999</spage><epage>1015</epage><pages>999-1015</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>Parametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [ 3 ] (SIAM J. Appl. Algebra Geom. 5 , 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10472-022-09801-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5845-2523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1012-2443
ispartof Annals of mathematics and artificial intelligence, 2022-10, Vol.90 (10), p.999-1015
issn 1012-2443
1573-7470
language eng
recordid cdi_proquest_journals_2918202861
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algebra
Algorithms
Analysis
Artificial Intelligence
Collision avoidance
Complex Systems
Computer Science
Mathematics
Motion planning
Obstacle avoidance
Parameterization
Planning
Robotics
Robots
Submarines
Topology
title Parametrized topological complexity of collision-free motion planning in the plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametrized%20topological%20complexity%20of%20collision-free%20motion%20planning%20in%20the%20plane&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Cohen,%20Daniel%20C.&rft.date=2022-10-01&rft.volume=90&rft.issue=10&rft.spage=999&rft.epage=1015&rft.pages=999-1015&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-022-09801-6&rft_dat=%3Cgale_proqu%3EA729362173%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918202861&rft_id=info:pmid/&rft_galeid=A729362173&rfr_iscdi=true