Multilayered neural architectures evolution for computing sequences of orthogonal polynomials
This article presents an evolutionary algorithm to autonomously construct full-connected multilayered feedforward neural architectures. This algorithm employs grammar-guided genetic programming with a context-free grammar that has been specifically designed to satisfy three important restrictions. F...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2018-12, Vol.84 (3-4), p.161-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 3-4 |
container_start_page | 161 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 84 |
creator | Barrios Rolanía, Dolores Delgado Martínez, Guillermo Manrique, Daniel |
description | This article presents an evolutionary algorithm to autonomously construct full-connected multilayered feedforward neural architectures. This algorithm employs grammar-guided genetic programming with a context-free grammar that has been specifically designed to satisfy three important restrictions. First, the sentences that belong to the language produced by the grammar only encode all valid neural architectures. Second, full-connected feedforward neural architectures of any size can be generated. Third, smaller-sized neural architectures are favored to avoid overfitting. The proposed evolutionary neural architectures construction system is applied to compute the terms of the two sequences that define the three-term recurrence relation associated with a sequence of orthogonal polynomials. This application imposes an important constraint: training datasets are always very small. Therefore, an adequate sized neural architecture has to be evolved to achieve satisfactory results, which are presented in terms of accuracy and size of the evolved neural architectures, and convergence speed of the evolutionary process. |
doi_str_mv | 10.1007/s10472-018-9601-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918200858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716217434</galeid><sourcerecordid>A716217434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f0277817ed914c9d9afdc89a1b5618400640d2b353cf62d73fb7649b4c925fc03</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4soOKcfwFvBc-ebNE3S4xj-g4kXPUpI06TraJOZpMK-vRkVPEkObxKe5-XHL8tuEawQALsPCAjDBSBe1BRQgc-yBapYWTDC4DzdAeECE1JeZlch7AGgppwuss_XaYj9II_a6za3evJyyKVXuz5qFSevQ66_3TDF3tncOJ8rNx7Sy3Z50F-TtioRzuTOx53rnE32wQ1H68ZeDuE6uzBp6Jvfucw-Hh_eN8_F9u3pZbPeFqqsqlgYwIxxxHRbI6LqtpamVbyWqKko4gSAEmhxU1alMhS3rDQNo6RuEosro6BcZnfz3oN3KVSIYu8mn8IEgWvEMQCveKJWM9XJQYveGhe9VOm0euyVs9r06X_NEMWIkZIkAc2C8i4Er404-H6U_igQiFPtYq5dpNrFqXaBk4NnJyTWdtr_Rflf-gGODoZ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918200858</pqid></control><display><type>article</type><title>Multilayered neural architectures evolution for computing sequences of orthogonal polynomials</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Barrios Rolanía, Dolores ; Delgado Martínez, Guillermo ; Manrique, Daniel</creator><creatorcontrib>Barrios Rolanía, Dolores ; Delgado Martínez, Guillermo ; Manrique, Daniel</creatorcontrib><description>This article presents an evolutionary algorithm to autonomously construct full-connected multilayered feedforward neural architectures. This algorithm employs grammar-guided genetic programming with a context-free grammar that has been specifically designed to satisfy three important restrictions. First, the sentences that belong to the language produced by the grammar only encode all valid neural architectures. Second, full-connected feedforward neural architectures of any size can be generated. Third, smaller-sized neural architectures are favored to avoid overfitting. The proposed evolutionary neural architectures construction system is applied to compute the terms of the two sequences that define the three-term recurrence relation associated with a sequence of orthogonal polynomials. This application imposes an important constraint: training datasets are always very small. Therefore, an adequate sized neural architecture has to be evolved to achieve satisfactory results, which are presented in terms of accuracy and size of the evolved neural architectures, and convergence speed of the evolutionary process.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-018-9601-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Complex Systems ; Computer Science ; Evolutionary algorithms ; Genetic algorithms ; Grammar ; Language ; Machine learning ; Mathematics ; Neural networks ; Polynomials ; Regularization methods ; Sequences</subject><ispartof>Annals of mathematics and artificial intelligence, 2018-12, Vol.84 (3-4), p.161-184</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Springer Nature Switzerland AG 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f0277817ed914c9d9afdc89a1b5618400640d2b353cf62d73fb7649b4c925fc03</citedby><cites>FETCH-LOGICAL-c355t-f0277817ed914c9d9afdc89a1b5618400640d2b353cf62d73fb7649b4c925fc03</cites><orcidid>0000-0002-0792-4156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-018-9601-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918200858?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Barrios Rolanía, Dolores</creatorcontrib><creatorcontrib>Delgado Martínez, Guillermo</creatorcontrib><creatorcontrib>Manrique, Daniel</creatorcontrib><title>Multilayered neural architectures evolution for computing sequences of orthogonal polynomials</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>This article presents an evolutionary algorithm to autonomously construct full-connected multilayered feedforward neural architectures. This algorithm employs grammar-guided genetic programming with a context-free grammar that has been specifically designed to satisfy three important restrictions. First, the sentences that belong to the language produced by the grammar only encode all valid neural architectures. Second, full-connected feedforward neural architectures of any size can be generated. Third, smaller-sized neural architectures are favored to avoid overfitting. The proposed evolutionary neural architectures construction system is applied to compute the terms of the two sequences that define the three-term recurrence relation associated with a sequence of orthogonal polynomials. This application imposes an important constraint: training datasets are always very small. Therefore, an adequate sized neural architecture has to be evolved to achieve satisfactory results, which are presented in terms of accuracy and size of the evolved neural architectures, and convergence speed of the evolutionary process.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Grammar</subject><subject>Language</subject><subject>Machine learning</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Regularization methods</subject><subject>Sequences</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LwzAYh4soOKcfwFvBc-ebNE3S4xj-g4kXPUpI06TraJOZpMK-vRkVPEkObxKe5-XHL8tuEawQALsPCAjDBSBe1BRQgc-yBapYWTDC4DzdAeECE1JeZlch7AGgppwuss_XaYj9II_a6za3evJyyKVXuz5qFSevQ66_3TDF3tncOJ8rNx7Sy3Z50F-TtioRzuTOx53rnE32wQ1H68ZeDuE6uzBp6Jvfucw-Hh_eN8_F9u3pZbPeFqqsqlgYwIxxxHRbI6LqtpamVbyWqKko4gSAEmhxU1alMhS3rDQNo6RuEosro6BcZnfz3oN3KVSIYu8mn8IEgWvEMQCveKJWM9XJQYveGhe9VOm0euyVs9r06X_NEMWIkZIkAc2C8i4Er404-H6U_igQiFPtYq5dpNrFqXaBk4NnJyTWdtr_Rflf-gGODoZ6</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Barrios Rolanía, Dolores</creator><creator>Delgado Martínez, Guillermo</creator><creator>Manrique, Daniel</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0792-4156</orcidid></search><sort><creationdate>20181201</creationdate><title>Multilayered neural architectures evolution for computing sequences of orthogonal polynomials</title><author>Barrios Rolanía, Dolores ; Delgado Martínez, Guillermo ; Manrique, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f0277817ed914c9d9afdc89a1b5618400640d2b353cf62d73fb7649b4c925fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Grammar</topic><topic>Language</topic><topic>Machine learning</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Regularization methods</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrios Rolanía, Dolores</creatorcontrib><creatorcontrib>Delgado Martínez, Guillermo</creatorcontrib><creatorcontrib>Manrique, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrios Rolanía, Dolores</au><au>Delgado Martínez, Guillermo</au><au>Manrique, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilayered neural architectures evolution for computing sequences of orthogonal polynomials</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>84</volume><issue>3-4</issue><spage>161</spage><epage>184</epage><pages>161-184</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>This article presents an evolutionary algorithm to autonomously construct full-connected multilayered feedforward neural architectures. This algorithm employs grammar-guided genetic programming with a context-free grammar that has been specifically designed to satisfy three important restrictions. First, the sentences that belong to the language produced by the grammar only encode all valid neural architectures. Second, full-connected feedforward neural architectures of any size can be generated. Third, smaller-sized neural architectures are favored to avoid overfitting. The proposed evolutionary neural architectures construction system is applied to compute the terms of the two sequences that define the three-term recurrence relation associated with a sequence of orthogonal polynomials. This application imposes an important constraint: training datasets are always very small. Therefore, an adequate sized neural architecture has to be evolved to achieve satisfactory results, which are presented in terms of accuracy and size of the evolved neural architectures, and convergence speed of the evolutionary process.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10472-018-9601-2</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0792-4156</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 2018-12, Vol.84 (3-4), p.161-184 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_proquest_journals_2918200858 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Complex Systems Computer Science Evolutionary algorithms Genetic algorithms Grammar Language Machine learning Mathematics Neural networks Polynomials Regularization methods Sequences |
title | Multilayered neural architectures evolution for computing sequences of orthogonal polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilayered%20neural%20architectures%20evolution%20for%20computing%20sequences%20of%20orthogonal%20polynomials&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Barrios%20Rolan%C3%ADa,%20Dolores&rft.date=2018-12-01&rft.volume=84&rft.issue=3-4&rft.spage=161&rft.epage=184&rft.pages=161-184&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-018-9601-2&rft_dat=%3Cgale_proqu%3EA716217434%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918200858&rft_id=info:pmid/&rft_galeid=A716217434&rfr_iscdi=true |