A propositional probabilistic logic with discrete linear time for reasoning about evidence
The aim of the paper is to present a sound, strongly complete and decidable probabilistic temporal logic that can model reasoning about evidence. The formal system developed here is actually a solution of a problem proposed by Halpern and Pucella (J Artif Intell Res 26:1–34, 2006 ).
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2012-07, Vol.65 (2-3), p.217-243 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 2-3 |
container_start_page | 217 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 65 |
creator | Ognjanović, Zoran Marković, Zoran Rašković, Miodrag Doder, Dragan Perović, Aleksandar |
description | The aim of the paper is to present a sound, strongly complete and decidable probabilistic temporal logic that can model reasoning about evidence. The formal system developed here is actually a solution of a problem proposed by Halpern and Pucella (J Artif Intell Res 26:1–34,
2006
). |
doi_str_mv | 10.1007/s10472-012-9307-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918192895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918192895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f715270c67825317f30329fceac2c99cf0d8cd858bf492f27f8277e0d44d07793</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VJ-jHJcVn8AsGLXryENE3WLN1mTbKK_96WCp68zAfzzsvMQ8glg2sGgDeJQYW8AMYLWQIW8ogsWI1lgRXC8VhPE15V5Sk5S2kLALIRzYK8reg-hn1IPvsw6H7qWt363qfsDe3DZoxfPr_TzicTbba094PVkWa_s9SFSKPVKQx-2FDdhkOm9tN3djD2nJw43Sd78ZuX5PXu9mX9UDw93z-uV0-F4Y3IhUNWcwTToOB1ydCVUHLpjNWGGymNg06YTtSidZXkjqMTHNFCV1UdIMpySa5m3_H0j4NNWW3DIY6_JMUlE0xyIetRxWaViSGlaJ3aR7_T8VsxUBNCNSNUIyg1IVSTM5930qgdNjb-Of-_9AOp6HRS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918192895</pqid></control><display><type>article</type><title>A propositional probabilistic logic with discrete linear time for reasoning about evidence</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ognjanović, Zoran ; Marković, Zoran ; Rašković, Miodrag ; Doder, Dragan ; Perović, Aleksandar</creator><creatorcontrib>Ognjanović, Zoran ; Marković, Zoran ; Rašković, Miodrag ; Doder, Dragan ; Perović, Aleksandar</creatorcontrib><description>The aim of the paper is to present a sound, strongly complete and decidable probabilistic temporal logic that can model reasoning about evidence. The formal system developed here is actually a solution of a problem proposed by Halpern and Pucella (J Artif Intell Res 26:1–34,
2006
).</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-012-9307-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Complex Systems ; Computer Science ; Mathematics ; Reasoning ; Temporal logic</subject><ispartof>Annals of mathematics and artificial intelligence, 2012-07, Vol.65 (2-3), p.217-243</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Springer Science+Business Media B.V. 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f715270c67825317f30329fceac2c99cf0d8cd858bf492f27f8277e0d44d07793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-012-9307-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918192895?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ognjanović, Zoran</creatorcontrib><creatorcontrib>Marković, Zoran</creatorcontrib><creatorcontrib>Rašković, Miodrag</creatorcontrib><creatorcontrib>Doder, Dragan</creatorcontrib><creatorcontrib>Perović, Aleksandar</creatorcontrib><title>A propositional probabilistic logic with discrete linear time for reasoning about evidence</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>The aim of the paper is to present a sound, strongly complete and decidable probabilistic temporal logic that can model reasoning about evidence. The formal system developed here is actually a solution of a problem proposed by Halpern and Pucella (J Artif Intell Res 26:1–34,
2006
).</description><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Reasoning</subject><subject>Temporal logic</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VJ-jHJcVn8AsGLXryENE3WLN1mTbKK_96WCp68zAfzzsvMQ8glg2sGgDeJQYW8AMYLWQIW8ogsWI1lgRXC8VhPE15V5Sk5S2kLALIRzYK8reg-hn1IPvsw6H7qWt363qfsDe3DZoxfPr_TzicTbba094PVkWa_s9SFSKPVKQx-2FDdhkOm9tN3djD2nJw43Sd78ZuX5PXu9mX9UDw93z-uV0-F4Y3IhUNWcwTToOB1ydCVUHLpjNWGGymNg06YTtSidZXkjqMTHNFCV1UdIMpySa5m3_H0j4NNWW3DIY6_JMUlE0xyIetRxWaViSGlaJ3aR7_T8VsxUBNCNSNUIyg1IVSTM5930qgdNjb-Of-_9AOp6HRS</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Ognjanović, Zoran</creator><creator>Marković, Zoran</creator><creator>Rašković, Miodrag</creator><creator>Doder, Dragan</creator><creator>Perović, Aleksandar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120701</creationdate><title>A propositional probabilistic logic with discrete linear time for reasoning about evidence</title><author>Ognjanović, Zoran ; Marković, Zoran ; Rašković, Miodrag ; Doder, Dragan ; Perović, Aleksandar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f715270c67825317f30329fceac2c99cf0d8cd858bf492f27f8277e0d44d07793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Reasoning</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ognjanović, Zoran</creatorcontrib><creatorcontrib>Marković, Zoran</creatorcontrib><creatorcontrib>Rašković, Miodrag</creatorcontrib><creatorcontrib>Doder, Dragan</creatorcontrib><creatorcontrib>Perović, Aleksandar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ognjanović, Zoran</au><au>Marković, Zoran</au><au>Rašković, Miodrag</au><au>Doder, Dragan</au><au>Perović, Aleksandar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A propositional probabilistic logic with discrete linear time for reasoning about evidence</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>65</volume><issue>2-3</issue><spage>217</spage><epage>243</epage><pages>217-243</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>The aim of the paper is to present a sound, strongly complete and decidable probabilistic temporal logic that can model reasoning about evidence. The formal system developed here is actually a solution of a problem proposed by Halpern and Pucella (J Artif Intell Res 26:1–34,
2006
).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10472-012-9307-9</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 2012-07, Vol.65 (2-3), p.217-243 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_proquest_journals_2918192895 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Complex Systems Computer Science Mathematics Reasoning Temporal logic |
title | A propositional probabilistic logic with discrete linear time for reasoning about evidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20propositional%20probabilistic%20logic%20with%20discrete%20linear%20time%20for%20reasoning%20about%20evidence&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Ognjanovi%C4%87,%20Zoran&rft.date=2012-07-01&rft.volume=65&rft.issue=2-3&rft.spage=217&rft.epage=243&rft.pages=217-243&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-012-9307-9&rft_dat=%3Cproquest_cross%3E2918192895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918192895&rft_id=info:pmid/&rfr_iscdi=true |