The Effect of Particle Size on Mine Waste Sulfide Oxidation Rates and Conceptual Treatment Costs
Acid and metalliferous drainage (AMD) oxidation reaction rates were determined using oxygen consumption rates in a high sulfur overburden rock from the Australian Latrobe Valley coal provinces, and a mid to low range sulfur waste rock from a porphyry copper deposit in Papua, New Guinea. Nine grain s...
Gespeichert in:
Veröffentlicht in: | Mine water and the environment 2019-12, Vol.38 (4), p.735-745 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 745 |
---|---|
container_issue | 4 |
container_start_page | 735 |
container_title | Mine water and the environment |
container_volume | 38 |
creator | Dettrick, D. Bourgeot, N. Costelloe, J. Yuen, S. Arora, M. |
description | Acid and metalliferous drainage (AMD) oxidation reaction rates were determined using oxygen consumption rates in a high sulfur overburden rock from the Australian Latrobe Valley coal provinces, and a mid to low range sulfur waste rock from a porphyry copper deposit in Papua, New Guinea. Nine grain sizes were tested, ranging from material retained by a 0.038 mm sieve through to a 40 mm sieve. Oxygen consumption rates in sealed cells were measured to establish pyrite oxidation rates (POR) in each sample. The oxygen consumption rates displayed a strong exponential reaction correlation with particle size for the material. The POR was found to range from 0.28 to 10.90 wt%/year FeS
2
for the materials tested. A relationship between particle size and POR was established for comparative purposes. The smaller grind sizes included in this study extend the AMD/POR particle size data set available in the literature and will assist with geochemical engineering for designing tailings storage facilities. The potential economic and mine design ramifications of additional reactivity of fine mine materials is assessed and discussed using a unit cost framework for applying neutralizing materials. |
doi_str_mv | 10.1007/s10230-019-00641-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918165930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918165930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9b13dc23b01403ae70ea57d965fd70b4310624704db6f17213225cb369a483623</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GZpE03R1nWP7Ci6IrHmLaJdum2a5KC-umNVvDmaYaZ994wP0KOEU4RoDgLCFwAA1QMQGbIcIdMUKJkCHK2m3rgOVOIfJ8chLAGwELyfEKeV6-WLpyzVaS9o3fGx6ZqLX1oPi3tO3rTdJY-mRDTaGhdU1t6-97UJjZpeW-iDdR0NZ33XWW3cTAtXXlr4sZ2MQ1DDIdkz5k22KPfOiWPF4vV_Iotby-v5-dLVglUkakSRV1xUQJmIIwtwJq8qJXMXV1AmYn0B88KyOpSOiw4Cs7zqhRSmWwmJBdTcjLmbn3_NtgQ9boffJdOaq5whjJXApKKj6rK9yF46_TWNxvjPzSC_iapR5I6kdQ_JDUmkxhNIYm7F-v_ov9xfQE2u3Q7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918165930</pqid></control><display><type>article</type><title>The Effect of Particle Size on Mine Waste Sulfide Oxidation Rates and Conceptual Treatment Costs</title><source>Springer Nature - Complete Springer Journals</source><creator>Dettrick, D. ; Bourgeot, N. ; Costelloe, J. ; Yuen, S. ; Arora, M.</creator><creatorcontrib>Dettrick, D. ; Bourgeot, N. ; Costelloe, J. ; Yuen, S. ; Arora, M.</creatorcontrib><description>Acid and metalliferous drainage (AMD) oxidation reaction rates were determined using oxygen consumption rates in a high sulfur overburden rock from the Australian Latrobe Valley coal provinces, and a mid to low range sulfur waste rock from a porphyry copper deposit in Papua, New Guinea. Nine grain sizes were tested, ranging from material retained by a 0.038 mm sieve through to a 40 mm sieve. Oxygen consumption rates in sealed cells were measured to establish pyrite oxidation rates (POR) in each sample. The oxygen consumption rates displayed a strong exponential reaction correlation with particle size for the material. The POR was found to range from 0.28 to 10.90 wt%/year FeS
2
for the materials tested. A relationship between particle size and POR was established for comparative purposes. The smaller grind sizes included in this study extend the AMD/POR particle size data set available in the literature and will assist with geochemical engineering for designing tailings storage facilities. The potential economic and mine design ramifications of additional reactivity of fine mine materials is assessed and discussed using a unit cost framework for applying neutralizing materials.</description><identifier>ISSN: 1025-9112</identifier><identifier>EISSN: 1616-1068</identifier><identifier>DOI: 10.1007/s10230-019-00641-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coal mining ; Copper ; Design ; Earth and Environmental Science ; Earth Sciences ; Ecotoxicology ; Fines ; Geology ; Grain size ; Humidity ; Hydrogeology ; Industrial Pollution Prevention ; Iron sulfides ; Metallurgy ; Mine tailings ; Mine wastes ; Mineral processing ; Mineral Resources ; Overburden ; Oxidation ; Oxygen ; Oxygen consumption ; Particle size ; Porphyry copper ; Pyrite ; Rocks ; Selenium ; Storage facilities ; Sulfur ; Sulphides ; Sulphur ; Tailings ; Technical Article ; Water Quality/Water Pollution</subject><ispartof>Mine water and the environment, 2019-12, Vol.38 (4), p.735-745</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9b13dc23b01403ae70ea57d965fd70b4310624704db6f17213225cb369a483623</citedby><cites>FETCH-LOGICAL-c319t-9b13dc23b01403ae70ea57d965fd70b4310624704db6f17213225cb369a483623</cites><orcidid>0000-0002-7997-1285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10230-019-00641-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10230-019-00641-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Dettrick, D.</creatorcontrib><creatorcontrib>Bourgeot, N.</creatorcontrib><creatorcontrib>Costelloe, J.</creatorcontrib><creatorcontrib>Yuen, S.</creatorcontrib><creatorcontrib>Arora, M.</creatorcontrib><title>The Effect of Particle Size on Mine Waste Sulfide Oxidation Rates and Conceptual Treatment Costs</title><title>Mine water and the environment</title><addtitle>Mine Water Environ</addtitle><description>Acid and metalliferous drainage (AMD) oxidation reaction rates were determined using oxygen consumption rates in a high sulfur overburden rock from the Australian Latrobe Valley coal provinces, and a mid to low range sulfur waste rock from a porphyry copper deposit in Papua, New Guinea. Nine grain sizes were tested, ranging from material retained by a 0.038 mm sieve through to a 40 mm sieve. Oxygen consumption rates in sealed cells were measured to establish pyrite oxidation rates (POR) in each sample. The oxygen consumption rates displayed a strong exponential reaction correlation with particle size for the material. The POR was found to range from 0.28 to 10.90 wt%/year FeS
2
for the materials tested. A relationship between particle size and POR was established for comparative purposes. The smaller grind sizes included in this study extend the AMD/POR particle size data set available in the literature and will assist with geochemical engineering for designing tailings storage facilities. The potential economic and mine design ramifications of additional reactivity of fine mine materials is assessed and discussed using a unit cost framework for applying neutralizing materials.</description><subject>Coal mining</subject><subject>Copper</subject><subject>Design</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecotoxicology</subject><subject>Fines</subject><subject>Geology</subject><subject>Grain size</subject><subject>Humidity</subject><subject>Hydrogeology</subject><subject>Industrial Pollution Prevention</subject><subject>Iron sulfides</subject><subject>Metallurgy</subject><subject>Mine tailings</subject><subject>Mine wastes</subject><subject>Mineral processing</subject><subject>Mineral Resources</subject><subject>Overburden</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Particle size</subject><subject>Porphyry copper</subject><subject>Pyrite</subject><subject>Rocks</subject><subject>Selenium</subject><subject>Storage facilities</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Tailings</subject><subject>Technical Article</subject><subject>Water Quality/Water Pollution</subject><issn>1025-9112</issn><issn>1616-1068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GZpE03R1nWP7Ci6IrHmLaJdum2a5KC-umNVvDmaYaZ994wP0KOEU4RoDgLCFwAA1QMQGbIcIdMUKJkCHK2m3rgOVOIfJ8chLAGwELyfEKeV6-WLpyzVaS9o3fGx6ZqLX1oPi3tO3rTdJY-mRDTaGhdU1t6-97UJjZpeW-iDdR0NZ33XWW3cTAtXXlr4sZ2MQ1DDIdkz5k22KPfOiWPF4vV_Iotby-v5-dLVglUkakSRV1xUQJmIIwtwJq8qJXMXV1AmYn0B88KyOpSOiw4Cs7zqhRSmWwmJBdTcjLmbn3_NtgQ9boffJdOaq5whjJXApKKj6rK9yF46_TWNxvjPzSC_iapR5I6kdQ_JDUmkxhNIYm7F-v_ov9xfQE2u3Q7</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Dettrick, D.</creator><creator>Bourgeot, N.</creator><creator>Costelloe, J.</creator><creator>Yuen, S.</creator><creator>Arora, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8C1</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7997-1285</orcidid></search><sort><creationdate>20191201</creationdate><title>The Effect of Particle Size on Mine Waste Sulfide Oxidation Rates and Conceptual Treatment Costs</title><author>Dettrick, D. ; Bourgeot, N. ; Costelloe, J. ; Yuen, S. ; Arora, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9b13dc23b01403ae70ea57d965fd70b4310624704db6f17213225cb369a483623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coal mining</topic><topic>Copper</topic><topic>Design</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecotoxicology</topic><topic>Fines</topic><topic>Geology</topic><topic>Grain size</topic><topic>Humidity</topic><topic>Hydrogeology</topic><topic>Industrial Pollution Prevention</topic><topic>Iron sulfides</topic><topic>Metallurgy</topic><topic>Mine tailings</topic><topic>Mine wastes</topic><topic>Mineral processing</topic><topic>Mineral Resources</topic><topic>Overburden</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Particle size</topic><topic>Porphyry copper</topic><topic>Pyrite</topic><topic>Rocks</topic><topic>Selenium</topic><topic>Storage facilities</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Tailings</topic><topic>Technical Article</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dettrick, D.</creatorcontrib><creatorcontrib>Bourgeot, N.</creatorcontrib><creatorcontrib>Costelloe, J.</creatorcontrib><creatorcontrib>Yuen, S.</creatorcontrib><creatorcontrib>Arora, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Mine water and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dettrick, D.</au><au>Bourgeot, N.</au><au>Costelloe, J.</au><au>Yuen, S.</au><au>Arora, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Particle Size on Mine Waste Sulfide Oxidation Rates and Conceptual Treatment Costs</atitle><jtitle>Mine water and the environment</jtitle><stitle>Mine Water Environ</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>38</volume><issue>4</issue><spage>735</spage><epage>745</epage><pages>735-745</pages><issn>1025-9112</issn><eissn>1616-1068</eissn><abstract>Acid and metalliferous drainage (AMD) oxidation reaction rates were determined using oxygen consumption rates in a high sulfur overburden rock from the Australian Latrobe Valley coal provinces, and a mid to low range sulfur waste rock from a porphyry copper deposit in Papua, New Guinea. Nine grain sizes were tested, ranging from material retained by a 0.038 mm sieve through to a 40 mm sieve. Oxygen consumption rates in sealed cells were measured to establish pyrite oxidation rates (POR) in each sample. The oxygen consumption rates displayed a strong exponential reaction correlation with particle size for the material. The POR was found to range from 0.28 to 10.90 wt%/year FeS
2
for the materials tested. A relationship between particle size and POR was established for comparative purposes. The smaller grind sizes included in this study extend the AMD/POR particle size data set available in the literature and will assist with geochemical engineering for designing tailings storage facilities. The potential economic and mine design ramifications of additional reactivity of fine mine materials is assessed and discussed using a unit cost framework for applying neutralizing materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10230-019-00641-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7997-1285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1025-9112 |
ispartof | Mine water and the environment, 2019-12, Vol.38 (4), p.735-745 |
issn | 1025-9112 1616-1068 |
language | eng |
recordid | cdi_proquest_journals_2918165930 |
source | Springer Nature - Complete Springer Journals |
subjects | Coal mining Copper Design Earth and Environmental Science Earth Sciences Ecotoxicology Fines Geology Grain size Humidity Hydrogeology Industrial Pollution Prevention Iron sulfides Metallurgy Mine tailings Mine wastes Mineral processing Mineral Resources Overburden Oxidation Oxygen Oxygen consumption Particle size Porphyry copper Pyrite Rocks Selenium Storage facilities Sulfur Sulphides Sulphur Tailings Technical Article Water Quality/Water Pollution |
title | The Effect of Particle Size on Mine Waste Sulfide Oxidation Rates and Conceptual Treatment Costs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Particle%20Size%20on%20Mine%20Waste%20Sulfide%20Oxidation%20Rates%20and%20Conceptual%20Treatment%20Costs&rft.jtitle=Mine%20water%20and%20the%20environment&rft.au=Dettrick,%20D.&rft.date=2019-12-01&rft.volume=38&rft.issue=4&rft.spage=735&rft.epage=745&rft.pages=735-745&rft.issn=1025-9112&rft.eissn=1616-1068&rft_id=info:doi/10.1007/s10230-019-00641-1&rft_dat=%3Cproquest_cross%3E2918165930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918165930&rft_id=info:pmid/&rfr_iscdi=true |