On a rainbow extremal problem for color‐critical graphs
Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2024-03, Vol.64 (2), p.460-489 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 2 |
container_start_page | 460 |
container_title | Random structures & algorithms |
container_volume | 64 |
creator | Chakraborti, Debsoumya Kim, Jaehoon Lee, Hyunwoo Liu, Hong Seo, Jaehyeon |
description | Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r>4$$ r>4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$. |
doi_str_mv | 10.1002/rsa.21189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918136899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918136899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKsH32DBk4dtk0nsJsdS_IJCwY9zyKYT3bJt6qSl9uYj-Iw-idH16mkG5vefGX6MnQs-EJzDkJIbgBDaHLCe4EaXoIQ-_OkVlEZLOGYnKS0455UE2WNmtipcQa5Z1XFX4PuGcOnaYk2xbnFZhEiFj22kr49PT82m8Xn4Qm79mk7ZUXBtwrO_2mfPN9dPk7tyOru9n4ynpQdTmVIqUfPajVBpADDI51ipwENwGCqvnFTgdRDBoKxlTgQ_AqODusK5qpzXss8uur35p7ctpo1dxC2t8kkLRmghR9qYTF12lKeYEmGwa2qWjvZWcPtjxmYz9tdMZocdu2ta3P8P2ofHcZf4BmAMZXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918136899</pqid></control><display><type>article</type><title>On a rainbow extremal problem for color‐critical graphs</title><source>Access via Wiley Online Library</source><creator>Chakraborti, Debsoumya ; Kim, Jaehoon ; Lee, Hyunwoo ; Liu, Hong ; Seo, Jaehyeon</creator><creatorcontrib>Chakraborti, Debsoumya ; Kim, Jaehoon ; Lee, Hyunwoo ; Liu, Hong ; Seo, Jaehyeon</creatorcontrib><description>Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r>4$$ r>4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21189</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Color ; color‐critical graphs ; Graphs ; rainbow extremal problem ; Vertex sets</subject><ispartof>Random structures & algorithms, 2024-03, Vol.64 (2), p.460-489</ispartof><rights>2023 Wiley Periodicals LLC</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</citedby><cites>FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.21189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.21189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chakraborti, Debsoumya</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Lee, Hyunwoo</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Seo, Jaehyeon</creatorcontrib><title>On a rainbow extremal problem for color‐critical graphs</title><title>Random structures & algorithms</title><description>Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r>4$$ r>4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$.</description><subject>Color</subject><subject>color‐critical graphs</subject><subject>Graphs</subject><subject>rainbow extremal problem</subject><subject>Vertex sets</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MoWKsH32DBk4dtk0nsJsdS_IJCwY9zyKYT3bJt6qSl9uYj-Iw-idH16mkG5vefGX6MnQs-EJzDkJIbgBDaHLCe4EaXoIQ-_OkVlEZLOGYnKS0455UE2WNmtipcQa5Z1XFX4PuGcOnaYk2xbnFZhEiFj22kr49PT82m8Xn4Qm79mk7ZUXBtwrO_2mfPN9dPk7tyOru9n4ynpQdTmVIqUfPajVBpADDI51ipwENwGCqvnFTgdRDBoKxlTgQ_AqODusK5qpzXss8uur35p7ctpo1dxC2t8kkLRmghR9qYTF12lKeYEmGwa2qWjvZWcPtjxmYz9tdMZocdu2ta3P8P2ofHcZf4BmAMZXs</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Chakraborti, Debsoumya</creator><creator>Kim, Jaehoon</creator><creator>Lee, Hyunwoo</creator><creator>Liu, Hong</creator><creator>Seo, Jaehyeon</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202403</creationdate><title>On a rainbow extremal problem for color‐critical graphs</title><author>Chakraborti, Debsoumya ; Kim, Jaehoon ; Lee, Hyunwoo ; Liu, Hong ; Seo, Jaehyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Color</topic><topic>color‐critical graphs</topic><topic>Graphs</topic><topic>rainbow extremal problem</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborti, Debsoumya</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Lee, Hyunwoo</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Seo, Jaehyeon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborti, Debsoumya</au><au>Kim, Jaehoon</au><au>Lee, Hyunwoo</au><au>Liu, Hong</au><au>Seo, Jaehyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a rainbow extremal problem for color‐critical graphs</atitle><jtitle>Random structures & algorithms</jtitle><date>2024-03</date><risdate>2024</risdate><volume>64</volume><issue>2</issue><spage>460</spage><epage>489</epage><pages>460-489</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r>4$$ r>4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.21189</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2024-03, Vol.64 (2), p.460-489 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_2918136899 |
source | Access via Wiley Online Library |
subjects | Color color‐critical graphs Graphs rainbow extremal problem Vertex sets |
title | On a rainbow extremal problem for color‐critical graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20rainbow%20extremal%20problem%20for%20color%E2%80%90critical%20graphs&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Chakraborti,%20Debsoumya&rft.date=2024-03&rft.volume=64&rft.issue=2&rft.spage=460&rft.epage=489&rft.pages=460-489&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21189&rft_dat=%3Cproquest_cross%3E2918136899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918136899&rft_id=info:pmid/&rfr_iscdi=true |