On a rainbow extremal problem for color‐critical graphs

Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2024-03, Vol.64 (2), p.460-489
Hauptverfasser: Chakraborti, Debsoumya, Kim, Jaehoon, Lee, Hyunwoo, Liu, Hong, Seo, Jaehyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 2
container_start_page 460
container_title Random structures & algorithms
container_volume 64
creator Chakraborti, Debsoumya
Kim, Jaehoon
Lee, Hyunwoo
Liu, Hong
Seo, Jaehyeon
description Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r>4$$ r>4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$.
doi_str_mv 10.1002/rsa.21189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918136899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918136899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKsH32DBk4dtk0nsJsdS_IJCwY9zyKYT3bJt6qSl9uYj-Iw-idH16mkG5vefGX6MnQs-EJzDkJIbgBDaHLCe4EaXoIQ-_OkVlEZLOGYnKS0455UE2WNmtipcQa5Z1XFX4PuGcOnaYk2xbnFZhEiFj22kr49PT82m8Xn4Qm79mk7ZUXBtwrO_2mfPN9dPk7tyOru9n4ynpQdTmVIqUfPajVBpADDI51ipwENwGCqvnFTgdRDBoKxlTgQ_AqODusK5qpzXss8uur35p7ctpo1dxC2t8kkLRmghR9qYTF12lKeYEmGwa2qWjvZWcPtjxmYz9tdMZocdu2ta3P8P2ofHcZf4BmAMZXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918136899</pqid></control><display><type>article</type><title>On a rainbow extremal problem for color‐critical graphs</title><source>Access via Wiley Online Library</source><creator>Chakraborti, Debsoumya ; Kim, Jaehoon ; Lee, Hyunwoo ; Liu, Hong ; Seo, Jaehyeon</creator><creatorcontrib>Chakraborti, Debsoumya ; Kim, Jaehoon ; Lee, Hyunwoo ; Liu, Hong ; Seo, Jaehyeon</creatorcontrib><description>Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r&gt;4$$ r&gt;4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21189</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Color ; color‐critical graphs ; Graphs ; rainbow extremal problem ; Vertex sets</subject><ispartof>Random structures &amp; algorithms, 2024-03, Vol.64 (2), p.460-489</ispartof><rights>2023 Wiley Periodicals LLC</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</citedby><cites>FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.21189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.21189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chakraborti, Debsoumya</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Lee, Hyunwoo</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Seo, Jaehyeon</creatorcontrib><title>On a rainbow extremal problem for color‐critical graphs</title><title>Random structures &amp; algorithms</title><description>Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r&gt;4$$ r&gt;4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$.</description><subject>Color</subject><subject>color‐critical graphs</subject><subject>Graphs</subject><subject>rainbow extremal problem</subject><subject>Vertex sets</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MoWKsH32DBk4dtk0nsJsdS_IJCwY9zyKYT3bJt6qSl9uYj-Iw-idH16mkG5vefGX6MnQs-EJzDkJIbgBDaHLCe4EaXoIQ-_OkVlEZLOGYnKS0455UE2WNmtipcQa5Z1XFX4PuGcOnaYk2xbnFZhEiFj22kr49PT82m8Xn4Qm79mk7ZUXBtwrO_2mfPN9dPk7tyOru9n4ynpQdTmVIqUfPajVBpADDI51ipwENwGCqvnFTgdRDBoKxlTgQ_AqODusK5qpzXss8uur35p7ctpo1dxC2t8kkLRmghR9qYTF12lKeYEmGwa2qWjvZWcPtjxmYz9tdMZocdu2ta3P8P2ofHcZf4BmAMZXs</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Chakraborti, Debsoumya</creator><creator>Kim, Jaehoon</creator><creator>Lee, Hyunwoo</creator><creator>Liu, Hong</creator><creator>Seo, Jaehyeon</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202403</creationdate><title>On a rainbow extremal problem for color‐critical graphs</title><author>Chakraborti, Debsoumya ; Kim, Jaehoon ; Lee, Hyunwoo ; Liu, Hong ; Seo, Jaehyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-341b0ba6e482229e0de74f0ffaef7c4a342c8f1f9e3b3297fc6298f45ed47ac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Color</topic><topic>color‐critical graphs</topic><topic>Graphs</topic><topic>rainbow extremal problem</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborti, Debsoumya</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Lee, Hyunwoo</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Seo, Jaehyeon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborti, Debsoumya</au><au>Kim, Jaehoon</au><au>Lee, Hyunwoo</au><au>Liu, Hong</au><au>Seo, Jaehyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a rainbow extremal problem for color‐critical graphs</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2024-03</date><risdate>2024</risdate><volume>64</volume><issue>2</issue><spage>460</spage><epage>489</epage><pages>460-489</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>Given k$$ k $$ graphs G1,…,Gk$$ {G}_1,\dots, {G}_k $$ over a common vertex set of size n$$ n $$, what is the maximum value of ∑i∈[k]e(Gi)$$ {\sum}_{i\in \left[k\right]}e\left({G}_i\right) $$ having no “colorful” copy of H$$ H $$, that is, a copy of H$$ H $$ containing at most one edge from each Gi$$ {G}_i $$? Keevash, Saks, Sudakov, and Verstraëte denoted this number as exk(n,H)$$ {\mathrm{ex}}_k\left(n,H\right) $$ and completely determined exk(n,Kr)$$ {\mathrm{ex}}_k\left(n,{K}_r\right) $$ for large n$$ n $$. In fact, they showed that, depending on the value of k$$ k $$, one of the two natural constructions is always the extremal construction. Moreover, they conjectured that the same holds for every color‐critical graphs, and proved it for 3‐color‐critical graphs. They also asked to classify the graphs H$$ H $$ that have only these two extremal constructions. We prove their conjecture for 4‐color‐critical graphs and for almost all r$$ r $$‐color‐critical graphs when r&gt;4$$ r&gt;4 $$. Moreover, we show that for every non‐color‐critical non‐bipartite graphs, none of the two natural constructions is extremal for certain values of k$$ k $$.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rsa.21189</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2024-03, Vol.64 (2), p.460-489
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_2918136899
source Access via Wiley Online Library
subjects Color
color‐critical graphs
Graphs
rainbow extremal problem
Vertex sets
title On a rainbow extremal problem for color‐critical graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20rainbow%20extremal%20problem%20for%20color%E2%80%90critical%20graphs&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Chakraborti,%20Debsoumya&rft.date=2024-03&rft.volume=64&rft.issue=2&rft.spage=460&rft.epage=489&rft.pages=460-489&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21189&rft_dat=%3Cproquest_cross%3E2918136899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918136899&rft_id=info:pmid/&rfr_iscdi=true