GPGPU computation and visualization of three-dimensional cellular automata

This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple renderin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2011, Vol.27 (1), p.67-81
Hauptverfasser: Gobron, Stéphane, Çöltekin, Arzu, Bonafos, Hervé, Thalmann, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 67
container_title The Visual computer
container_volume 27
creator Gobron, Stéphane
Çöltekin, Arzu
Bonafos, Hervé
Thalmann, Daniel
description This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.
doi_str_mv 10.1007/s00371-010-0515-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918135928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918135928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouP75AN4KnqMzSdMkR1l0VRbcg3sOITvVLu12TVpBP71ZKnjyNMzjvTfDj7ErhBsE0LcJQGrkgMBBoeJ4xGZYSsGFRHXMZoDacKGNPWVnKW0h77q0M_a8WC1W6yL03X4c_ND0u8LvNsVnk0bfNt-T0tfF8B6J-KbpaJey5NsiUNuOrY-FH4e-84O_YCe1bxNd_s5ztn64f50_8uXL4ml-t-RBKjtwEiUZJRFJKbJWhkqLUJkgoKZKk9gYaw1UWAohBYBRKAlMXVthg9Kykufseurdx_5jpDS4bT_G_FJywqLBfEWY7MLJFWKfUqTa7WPT-fjlENwBmZuQuYzMHZA5zBkxZVL27t4o_jX_H_oBFXhszw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918135928</pqid></control><display><type>article</type><title>GPGPU computation and visualization of three-dimensional cellular automata</title><source>SpringerLink Journals (MCLS)</source><source>ProQuest Central</source><creator>Gobron, Stéphane ; Çöltekin, Arzu ; Bonafos, Hervé ; Thalmann, Daniel</creator><creatorcontrib>Gobron, Stéphane ; Çöltekin, Arzu ; Bonafos, Hervé ; Thalmann, Daniel</creatorcontrib><description>This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-010-0515-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Automata theory ; Cellular automata ; Computer Graphics ; Computer Science ; Graphics processing units ; Image Processing and Computer Vision ; Microprocessors ; Original Article ; Performance evaluation ; Real time ; User interface ; Visualization</subject><ispartof>The Visual computer, 2011, Vol.27 (1), p.67-81</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</citedby><cites>FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-010-0515-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918135928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Gobron, Stéphane</creatorcontrib><creatorcontrib>Çöltekin, Arzu</creatorcontrib><creatorcontrib>Bonafos, Hervé</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><title>GPGPU computation and visualization of three-dimensional cellular automata</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automata theory</subject><subject>Cellular automata</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Graphics processing units</subject><subject>Image Processing and Computer Vision</subject><subject>Microprocessors</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>User interface</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouP75AN4KnqMzSdMkR1l0VRbcg3sOITvVLu12TVpBP71ZKnjyNMzjvTfDj7ErhBsE0LcJQGrkgMBBoeJ4xGZYSsGFRHXMZoDacKGNPWVnKW0h77q0M_a8WC1W6yL03X4c_ND0u8LvNsVnk0bfNt-T0tfF8B6J-KbpaJey5NsiUNuOrY-FH4e-84O_YCe1bxNd_s5ztn64f50_8uXL4ml-t-RBKjtwEiUZJRFJKbJWhkqLUJkgoKZKk9gYaw1UWAohBYBRKAlMXVthg9Kykufseurdx_5jpDS4bT_G_FJywqLBfEWY7MLJFWKfUqTa7WPT-fjlENwBmZuQuYzMHZA5zBkxZVL27t4o_jX_H_oBFXhszw</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Gobron, Stéphane</creator><creator>Çöltekin, Arzu</creator><creator>Bonafos, Hervé</creator><creator>Thalmann, Daniel</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2011</creationdate><title>GPGPU computation and visualization of three-dimensional cellular automata</title><author>Gobron, Stéphane ; Çöltekin, Arzu ; Bonafos, Hervé ; Thalmann, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automata theory</topic><topic>Cellular automata</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Graphics processing units</topic><topic>Image Processing and Computer Vision</topic><topic>Microprocessors</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>User interface</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gobron, Stéphane</creatorcontrib><creatorcontrib>Çöltekin, Arzu</creatorcontrib><creatorcontrib>Bonafos, Hervé</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gobron, Stéphane</au><au>Çöltekin, Arzu</au><au>Bonafos, Hervé</au><au>Thalmann, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPGPU computation and visualization of three-dimensional cellular automata</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2011</date><risdate>2011</risdate><volume>27</volume><issue>1</issue><spage>67</spage><epage>81</epage><pages>67-81</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00371-010-0515-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2011, Vol.27 (1), p.67-81
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918135928
source SpringerLink Journals (MCLS); ProQuest Central
subjects Algorithms
Artificial Intelligence
Automata theory
Cellular automata
Computer Graphics
Computer Science
Graphics processing units
Image Processing and Computer Vision
Microprocessors
Original Article
Performance evaluation
Real time
User interface
Visualization
title GPGPU computation and visualization of three-dimensional cellular automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPGPU%20computation%20and%20visualization%20of%20three-dimensional%20cellular%20automata&rft.jtitle=The%20Visual%20computer&rft.au=Gobron,%20St%C3%A9phane&rft.date=2011&rft.volume=27&rft.issue=1&rft.spage=67&rft.epage=81&rft.pages=67-81&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-010-0515-1&rft_dat=%3Cproquest_cross%3E2918135928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918135928&rft_id=info:pmid/&rfr_iscdi=true