GPGPU computation and visualization of three-dimensional cellular automata
This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple renderin...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2011, Vol.27 (1), p.67-81 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | The Visual computer |
container_volume | 27 |
creator | Gobron, Stéphane Çöltekin, Arzu Bonafos, Hervé Thalmann, Daniel |
description | This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a
general-purpose computing on graphics processor units
(GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of
top-down
and
bottom-up
approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU. |
doi_str_mv | 10.1007/s00371-010-0515-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918135928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918135928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouP75AN4KnqMzSdMkR1l0VRbcg3sOITvVLu12TVpBP71ZKnjyNMzjvTfDj7ErhBsE0LcJQGrkgMBBoeJ4xGZYSsGFRHXMZoDacKGNPWVnKW0h77q0M_a8WC1W6yL03X4c_ND0u8LvNsVnk0bfNt-T0tfF8B6J-KbpaJey5NsiUNuOrY-FH4e-84O_YCe1bxNd_s5ztn64f50_8uXL4ml-t-RBKjtwEiUZJRFJKbJWhkqLUJkgoKZKk9gYaw1UWAohBYBRKAlMXVthg9Kykufseurdx_5jpDS4bT_G_FJywqLBfEWY7MLJFWKfUqTa7WPT-fjlENwBmZuQuYzMHZA5zBkxZVL27t4o_jX_H_oBFXhszw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918135928</pqid></control><display><type>article</type><title>GPGPU computation and visualization of three-dimensional cellular automata</title><source>SpringerLink Journals (MCLS)</source><source>ProQuest Central</source><creator>Gobron, Stéphane ; Çöltekin, Arzu ; Bonafos, Hervé ; Thalmann, Daniel</creator><creatorcontrib>Gobron, Stéphane ; Çöltekin, Arzu ; Bonafos, Hervé ; Thalmann, Daniel</creatorcontrib><description>This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a
general-purpose computing on graphics processor units
(GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of
top-down
and
bottom-up
approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-010-0515-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Automata theory ; Cellular automata ; Computer Graphics ; Computer Science ; Graphics processing units ; Image Processing and Computer Vision ; Microprocessors ; Original Article ; Performance evaluation ; Real time ; User interface ; Visualization</subject><ispartof>The Visual computer, 2011, Vol.27 (1), p.67-81</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</citedby><cites>FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-010-0515-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918135928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Gobron, Stéphane</creatorcontrib><creatorcontrib>Çöltekin, Arzu</creatorcontrib><creatorcontrib>Bonafos, Hervé</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><title>GPGPU computation and visualization of three-dimensional cellular automata</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a
general-purpose computing on graphics processor units
(GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of
top-down
and
bottom-up
approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automata theory</subject><subject>Cellular automata</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Graphics processing units</subject><subject>Image Processing and Computer Vision</subject><subject>Microprocessors</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>User interface</subject><subject>Visualization</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouP75AN4KnqMzSdMkR1l0VRbcg3sOITvVLu12TVpBP71ZKnjyNMzjvTfDj7ErhBsE0LcJQGrkgMBBoeJ4xGZYSsGFRHXMZoDacKGNPWVnKW0h77q0M_a8WC1W6yL03X4c_ND0u8LvNsVnk0bfNt-T0tfF8B6J-KbpaJey5NsiUNuOrY-FH4e-84O_YCe1bxNd_s5ztn64f50_8uXL4ml-t-RBKjtwEiUZJRFJKbJWhkqLUJkgoKZKk9gYaw1UWAohBYBRKAlMXVthg9Kykufseurdx_5jpDS4bT_G_FJywqLBfEWY7MLJFWKfUqTa7WPT-fjlENwBmZuQuYzMHZA5zBkxZVL27t4o_jX_H_oBFXhszw</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Gobron, Stéphane</creator><creator>Çöltekin, Arzu</creator><creator>Bonafos, Hervé</creator><creator>Thalmann, Daniel</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2011</creationdate><title>GPGPU computation and visualization of three-dimensional cellular automata</title><author>Gobron, Stéphane ; Çöltekin, Arzu ; Bonafos, Hervé ; Thalmann, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e24e85311e55e993c672c68c20fe67e2d899806142232008513e08ff929c57363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automata theory</topic><topic>Cellular automata</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Graphics processing units</topic><topic>Image Processing and Computer Vision</topic><topic>Microprocessors</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>User interface</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gobron, Stéphane</creatorcontrib><creatorcontrib>Çöltekin, Arzu</creatorcontrib><creatorcontrib>Bonafos, Hervé</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gobron, Stéphane</au><au>Çöltekin, Arzu</au><au>Bonafos, Hervé</au><au>Thalmann, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPGPU computation and visualization of three-dimensional cellular automata</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2011</date><risdate>2011</risdate><volume>27</volume><issue>1</issue><spage>67</spage><epage>81</epage><pages>67-81</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a
general-purpose computing on graphics processor units
(GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of
top-down
and
bottom-up
approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00371-010-0515-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2011, Vol.27 (1), p.67-81 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918135928 |
source | SpringerLink Journals (MCLS); ProQuest Central |
subjects | Algorithms Artificial Intelligence Automata theory Cellular automata Computer Graphics Computer Science Graphics processing units Image Processing and Computer Vision Microprocessors Original Article Performance evaluation Real time User interface Visualization |
title | GPGPU computation and visualization of three-dimensional cellular automata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPGPU%20computation%20and%20visualization%20of%20three-dimensional%20cellular%20automata&rft.jtitle=The%20Visual%20computer&rft.au=Gobron,%20St%C3%A9phane&rft.date=2011&rft.volume=27&rft.issue=1&rft.spage=67&rft.epage=81&rft.pages=67-81&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-010-0515-1&rft_dat=%3Cproquest_cross%3E2918135928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918135928&rft_id=info:pmid/&rfr_iscdi=true |