A general approach to the measurement of change in fuzzy concept lattices

The quantity of unstructured and semi-structured data available is growing rapidly. Adding structure to such data by grouping similar items into fuzzy categories (or granules) can be a productive approach, and can lead to additional knowledge (e.g. by monitoring association and other relations betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2013-12, Vol.17 (12), p.2223-2234
Hauptverfasser: Martin, T. P., Abd Rahim, N. H., Majidian, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2234
container_issue 12
container_start_page 2223
container_title Soft computing (Berlin, Germany)
container_volume 17
creator Martin, T. P.
Abd Rahim, N. H.
Majidian, A.
description The quantity of unstructured and semi-structured data available is growing rapidly. Adding structure to such data by grouping similar items into fuzzy categories (or granules) can be a productive approach, and can lead to additional knowledge (e.g. by monitoring association and other relations between classes). Formal concept analysis (and fuzzy formal concept analysis) enables us to identify hierarchical structure arising from similarities in attribute values. However, in an environment where source data is updated, this data-driven approach may lead to concept lattices whose structure varies over time (that is, the number of concepts and their relation to each other may change significantly as updates are processed). In this paper, we describe a novel way of measuring the distance between concept lattices. The method can be applied to comparison of lattices derived from the same set of objects using different attributes or to different sets of objects categorised by the same attributes. We prove that the proposed method is a distance metric and illustrate its use by means of examples.
doi_str_mv 10.1007/s00500-013-1095-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918113683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918113683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a942c97d6978570b061b91795f37269c71096dd92eff89c7f3aeeab65627ceb33</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTb4kdjxsqp4VKrEBtaW447bVGkSbGfRfj0uQWLFamake2fuHITuGX1klKqnSGlJKaFMEEZ1SeQFmrFCCKIKpS9_ek6ULMQ1uolxTylnqhQztFrgLXQQbIvtMITeuh1OPU47wAewcQxwgC7h3mO3s90WcNNhP55OR-z6zsGQcGtTahzEW3TlbRvh7rfO0efL88fyjazfX1fLxZo4wWQiVhfcabWRWlWlojWVrNZM6dILxaV2KseXm43m4H2VRy8sgK1lKblyUAsxRw_T3pz2a4SYzL4fQ5dPGq5ZxZiQ1VnFJpULfYwBvBlCc7DhaBg1Z2JmImYyMXMmZmT28MkTszb_Gv42_2_6BqhrbS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918113683</pqid></control><display><type>article</type><title>A general approach to the measurement of change in fuzzy concept lattices</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Martin, T. P. ; Abd Rahim, N. H. ; Majidian, A.</creator><creatorcontrib>Martin, T. P. ; Abd Rahim, N. H. ; Majidian, A.</creatorcontrib><description>The quantity of unstructured and semi-structured data available is growing rapidly. Adding structure to such data by grouping similar items into fuzzy categories (or granules) can be a productive approach, and can lead to additional knowledge (e.g. by monitoring association and other relations between classes). Formal concept analysis (and fuzzy formal concept analysis) enables us to identify hierarchical structure arising from similarities in attribute values. However, in an environment where source data is updated, this data-driven approach may lead to concept lattices whose structure varies over time (that is, the number of concepts and their relation to each other may change significantly as updates are processed). In this paper, we describe a novel way of measuring the distance between concept lattices. The method can be applied to comparison of lattices derived from the same set of objects using different attributes or to different sets of objects categorised by the same attributes. We prove that the proposed method is a distance metric and illustrate its use by means of examples.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-013-1095-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Computational Intelligence ; Control ; Datasets ; Engineering ; Fuzzy sets ; Lattices ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Motion pictures ; Product reviews ; Robotics ; Software ; Structured data ; Unstructured data</subject><ispartof>Soft computing (Berlin, Germany), 2013-12, Vol.17 (12), p.2223-2234</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a942c97d6978570b061b91795f37269c71096dd92eff89c7f3aeeab65627ceb33</citedby><cites>FETCH-LOGICAL-c316t-a942c97d6978570b061b91795f37269c71096dd92eff89c7f3aeeab65627ceb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-013-1095-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918113683?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Martin, T. P.</creatorcontrib><creatorcontrib>Abd Rahim, N. H.</creatorcontrib><creatorcontrib>Majidian, A.</creatorcontrib><title>A general approach to the measurement of change in fuzzy concept lattices</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The quantity of unstructured and semi-structured data available is growing rapidly. Adding structure to such data by grouping similar items into fuzzy categories (or granules) can be a productive approach, and can lead to additional knowledge (e.g. by monitoring association and other relations between classes). Formal concept analysis (and fuzzy formal concept analysis) enables us to identify hierarchical structure arising from similarities in attribute values. However, in an environment where source data is updated, this data-driven approach may lead to concept lattices whose structure varies over time (that is, the number of concepts and their relation to each other may change significantly as updates are processed). In this paper, we describe a novel way of measuring the distance between concept lattices. The method can be applied to comparison of lattices derived from the same set of objects using different attributes or to different sets of objects categorised by the same attributes. We prove that the proposed method is a distance metric and illustrate its use by means of examples.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Fuzzy sets</subject><subject>Lattices</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Motion pictures</subject><subject>Product reviews</subject><subject>Robotics</subject><subject>Software</subject><subject>Structured data</subject><subject>Unstructured data</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssTb4kdjxsqp4VKrEBtaW447bVGkSbGfRfj0uQWLFamake2fuHITuGX1klKqnSGlJKaFMEEZ1SeQFmrFCCKIKpS9_ek6ULMQ1uolxTylnqhQztFrgLXQQbIvtMITeuh1OPU47wAewcQxwgC7h3mO3s90WcNNhP55OR-z6zsGQcGtTahzEW3TlbRvh7rfO0efL88fyjazfX1fLxZo4wWQiVhfcabWRWlWlojWVrNZM6dILxaV2KseXm43m4H2VRy8sgK1lKblyUAsxRw_T3pz2a4SYzL4fQ5dPGq5ZxZiQ1VnFJpULfYwBvBlCc7DhaBg1Z2JmImYyMXMmZmT28MkTszb_Gv42_2_6BqhrbS0</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Martin, T. P.</creator><creator>Abd Rahim, N. H.</creator><creator>Majidian, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20131201</creationdate><title>A general approach to the measurement of change in fuzzy concept lattices</title><author>Martin, T. P. ; Abd Rahim, N. H. ; Majidian, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a942c97d6978570b061b91795f37269c71096dd92eff89c7f3aeeab65627ceb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Fuzzy sets</topic><topic>Lattices</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Motion pictures</topic><topic>Product reviews</topic><topic>Robotics</topic><topic>Software</topic><topic>Structured data</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, T. P.</creatorcontrib><creatorcontrib>Abd Rahim, N. H.</creatorcontrib><creatorcontrib>Majidian, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, T. P.</au><au>Abd Rahim, N. H.</au><au>Majidian, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general approach to the measurement of change in fuzzy concept lattices</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>17</volume><issue>12</issue><spage>2223</spage><epage>2234</epage><pages>2223-2234</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The quantity of unstructured and semi-structured data available is growing rapidly. Adding structure to such data by grouping similar items into fuzzy categories (or granules) can be a productive approach, and can lead to additional knowledge (e.g. by monitoring association and other relations between classes). Formal concept analysis (and fuzzy formal concept analysis) enables us to identify hierarchical structure arising from similarities in attribute values. However, in an environment where source data is updated, this data-driven approach may lead to concept lattices whose structure varies over time (that is, the number of concepts and their relation to each other may change significantly as updates are processed). In this paper, we describe a novel way of measuring the distance between concept lattices. The method can be applied to comparison of lattices derived from the same set of objects using different attributes or to different sets of objects categorised by the same attributes. We prove that the proposed method is a distance metric and illustrate its use by means of examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-013-1095-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2013-12, Vol.17 (12), p.2223-2234
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918113683
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial Intelligence
Classification
Computational Intelligence
Control
Datasets
Engineering
Fuzzy sets
Lattices
Machine learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Motion pictures
Product reviews
Robotics
Software
Structured data
Unstructured data
title A general approach to the measurement of change in fuzzy concept lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20approach%20to%20the%20measurement%20of%20change%20in%20fuzzy%20concept%20lattices&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Martin,%20T.%20P.&rft.date=2013-12-01&rft.volume=17&rft.issue=12&rft.spage=2223&rft.epage=2234&rft.pages=2223-2234&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-013-1095-6&rft_dat=%3Cproquest_cross%3E2918113683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918113683&rft_id=info:pmid/&rfr_iscdi=true