An adaptive guided variable neighborhood search based on honey-bee mating optimization algorithm for the course timetabling problem

A standard honey-bee mating optimization algorithm (HBMO) utilizes the steepest descent local search algorithm as a worker. The steepest descent algorithm has the advantage of being simple to understand, fast and is easy to implement. However, it can easily trapped in a local optimum and subsequentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-11, Vol.21 (22), p.6755-6765
Hauptverfasser: Aziz, Rafidah Abdul, Ayob, Masri, Othman, Zalinda, Ahmad, Zulkifli, Sabar, Nasser R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6765
container_issue 22
container_start_page 6755
container_title Soft computing (Berlin, Germany)
container_volume 21
creator Aziz, Rafidah Abdul
Ayob, Masri
Othman, Zalinda
Ahmad, Zulkifli
Sabar, Nasser R.
description A standard honey-bee mating optimization algorithm (HBMO) utilizes the steepest descent local search algorithm as a worker. The steepest descent algorithm has the advantage of being simple to understand, fast and is easy to implement. However, it can easily trapped in a local optimum and subsequently restrict the performance of HBMO. Furthermore, the type of neighborhood structures that are used within the local search algorithm might impact on the performance of algorithm. This work aimed to enhance the performance of HBMO by using an adaptive guided variable neighborhood search (AGVNS) as a worker. The AGVNS algorithm is a variant of variable neighborhood search algorithm that incorporates some problem-specific knowledge and utilizes an adaptive learning mechanism to find the most suitable neighborhood structure during the searching process. In order to evaluate the effectiveness of the proposed algorithm, the Socha course timetabling dataset has been chosen as the tested domain problem. The results demonstrated that the performance of the proposed algorithm is comparable to other approaches in the literature. Indeed, the proposed algorithm obtained the best results as compared to other approaches on some instances. These results indicate the effectiveness of combining HBMO and AGVNS for solving course timetabling problems, hence demonstrated that the AGVNS can enhance the performance of HBMO.
doi_str_mv 10.1007/s00500-016-2225-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918093391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918093391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-5d76c4630684849baf5337ef65a1977ac04c5668c1bb57819ee24db8505ac5473</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLuA62jemVmW4gsEN7oOSebOo3QmNZkW6tY_bmoFV65uLvnOOZdTFNeU3FJC9F0iRBKCCVWYMSZxeVLMqOAca6Gr0583w1oJfl5cpLQihFEt-az4WozI1nYz9TtA7bavoUY7G3vr1oBG6NvOhdiFUKMENvoOOZsyEkbUhRH22AGgwU792KKQTYb-My_5167bEPupG1ATIpo6QD5sYwKUGZiy-0GxiSHHDJfFWWPXCa5-57x4f7h_Wz7hl9fH5-XiBXuuxIRlrZUXihNVilJUzjaScw2NkpZWWltPhJdKlZ46J3VJKwAmaldKIq2XQvN5cXP0zbkfW0iTWeWbxhxpWEVLUnFe0UzRI-VjSClCYzaxH2zcG0rMoWtz7Nrkrs2ha1NmDTtqUmbHFuKf8_-ib8ZQg0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918093391</pqid></control><display><type>article</type><title>An adaptive guided variable neighborhood search based on honey-bee mating optimization algorithm for the course timetabling problem</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Aziz, Rafidah Abdul ; Ayob, Masri ; Othman, Zalinda ; Ahmad, Zulkifli ; Sabar, Nasser R.</creator><creatorcontrib>Aziz, Rafidah Abdul ; Ayob, Masri ; Othman, Zalinda ; Ahmad, Zulkifli ; Sabar, Nasser R.</creatorcontrib><description>A standard honey-bee mating optimization algorithm (HBMO) utilizes the steepest descent local search algorithm as a worker. The steepest descent algorithm has the advantage of being simple to understand, fast and is easy to implement. However, it can easily trapped in a local optimum and subsequently restrict the performance of HBMO. Furthermore, the type of neighborhood structures that are used within the local search algorithm might impact on the performance of algorithm. This work aimed to enhance the performance of HBMO by using an adaptive guided variable neighborhood search (AGVNS) as a worker. The AGVNS algorithm is a variant of variable neighborhood search algorithm that incorporates some problem-specific knowledge and utilizes an adaptive learning mechanism to find the most suitable neighborhood structure during the searching process. In order to evaluate the effectiveness of the proposed algorithm, the Socha course timetabling dataset has been chosen as the tested domain problem. The results demonstrated that the performance of the proposed algorithm is comparable to other approaches in the literature. Indeed, the proposed algorithm obtained the best results as compared to other approaches on some instances. These results indicate the effectiveness of combining HBMO and AGVNS for solving course timetabling problems, hence demonstrated that the AGVNS can enhance the performance of HBMO.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2225-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animal reproduction ; Artificial Intelligence ; Bees ; Computational Intelligence ; Control ; Effectiveness ; Energy ; Engineering ; Honey ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Robotics ; Search algorithms ; Sperm ; Workers</subject><ispartof>Soft computing (Berlin, Germany), 2017-11, Vol.21 (22), p.6755-6765</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-5d76c4630684849baf5337ef65a1977ac04c5668c1bb57819ee24db8505ac5473</citedby><cites>FETCH-LOGICAL-c364t-5d76c4630684849baf5337ef65a1977ac04c5668c1bb57819ee24db8505ac5473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2225-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918093391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Aziz, Rafidah Abdul</creatorcontrib><creatorcontrib>Ayob, Masri</creatorcontrib><creatorcontrib>Othman, Zalinda</creatorcontrib><creatorcontrib>Ahmad, Zulkifli</creatorcontrib><creatorcontrib>Sabar, Nasser R.</creatorcontrib><title>An adaptive guided variable neighborhood search based on honey-bee mating optimization algorithm for the course timetabling problem</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>A standard honey-bee mating optimization algorithm (HBMO) utilizes the steepest descent local search algorithm as a worker. The steepest descent algorithm has the advantage of being simple to understand, fast and is easy to implement. However, it can easily trapped in a local optimum and subsequently restrict the performance of HBMO. Furthermore, the type of neighborhood structures that are used within the local search algorithm might impact on the performance of algorithm. This work aimed to enhance the performance of HBMO by using an adaptive guided variable neighborhood search (AGVNS) as a worker. The AGVNS algorithm is a variant of variable neighborhood search algorithm that incorporates some problem-specific knowledge and utilizes an adaptive learning mechanism to find the most suitable neighborhood structure during the searching process. In order to evaluate the effectiveness of the proposed algorithm, the Socha course timetabling dataset has been chosen as the tested domain problem. The results demonstrated that the performance of the proposed algorithm is comparable to other approaches in the literature. Indeed, the proposed algorithm obtained the best results as compared to other approaches on some instances. These results indicate the effectiveness of combining HBMO and AGVNS for solving course timetabling problems, hence demonstrated that the AGVNS can enhance the performance of HBMO.</description><subject>Algorithms</subject><subject>Animal reproduction</subject><subject>Artificial Intelligence</subject><subject>Bees</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Effectiveness</subject><subject>Energy</subject><subject>Engineering</subject><subject>Honey</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Search algorithms</subject><subject>Sperm</subject><subject>Workers</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLuA62jemVmW4gsEN7oOSebOo3QmNZkW6tY_bmoFV65uLvnOOZdTFNeU3FJC9F0iRBKCCVWYMSZxeVLMqOAca6Gr0583w1oJfl5cpLQihFEt-az4WozI1nYz9TtA7bavoUY7G3vr1oBG6NvOhdiFUKMENvoOOZsyEkbUhRH22AGgwU792KKQTYb-My_5167bEPupG1ATIpo6QD5sYwKUGZiy-0GxiSHHDJfFWWPXCa5-57x4f7h_Wz7hl9fH5-XiBXuuxIRlrZUXihNVilJUzjaScw2NkpZWWltPhJdKlZ46J3VJKwAmaldKIq2XQvN5cXP0zbkfW0iTWeWbxhxpWEVLUnFe0UzRI-VjSClCYzaxH2zcG0rMoWtz7Nrkrs2ha1NmDTtqUmbHFuKf8_-ib8ZQg0c</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Aziz, Rafidah Abdul</creator><creator>Ayob, Masri</creator><creator>Othman, Zalinda</creator><creator>Ahmad, Zulkifli</creator><creator>Sabar, Nasser R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171101</creationdate><title>An adaptive guided variable neighborhood search based on honey-bee mating optimization algorithm for the course timetabling problem</title><author>Aziz, Rafidah Abdul ; Ayob, Masri ; Othman, Zalinda ; Ahmad, Zulkifli ; Sabar, Nasser R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-5d76c4630684849baf5337ef65a1977ac04c5668c1bb57819ee24db8505ac5473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Animal reproduction</topic><topic>Artificial Intelligence</topic><topic>Bees</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Effectiveness</topic><topic>Energy</topic><topic>Engineering</topic><topic>Honey</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Search algorithms</topic><topic>Sperm</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aziz, Rafidah Abdul</creatorcontrib><creatorcontrib>Ayob, Masri</creatorcontrib><creatorcontrib>Othman, Zalinda</creatorcontrib><creatorcontrib>Ahmad, Zulkifli</creatorcontrib><creatorcontrib>Sabar, Nasser R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aziz, Rafidah Abdul</au><au>Ayob, Masri</au><au>Othman, Zalinda</au><au>Ahmad, Zulkifli</au><au>Sabar, Nasser R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive guided variable neighborhood search based on honey-bee mating optimization algorithm for the course timetabling problem</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>21</volume><issue>22</issue><spage>6755</spage><epage>6765</epage><pages>6755-6765</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>A standard honey-bee mating optimization algorithm (HBMO) utilizes the steepest descent local search algorithm as a worker. The steepest descent algorithm has the advantage of being simple to understand, fast and is easy to implement. However, it can easily trapped in a local optimum and subsequently restrict the performance of HBMO. Furthermore, the type of neighborhood structures that are used within the local search algorithm might impact on the performance of algorithm. This work aimed to enhance the performance of HBMO by using an adaptive guided variable neighborhood search (AGVNS) as a worker. The AGVNS algorithm is a variant of variable neighborhood search algorithm that incorporates some problem-specific knowledge and utilizes an adaptive learning mechanism to find the most suitable neighborhood structure during the searching process. In order to evaluate the effectiveness of the proposed algorithm, the Socha course timetabling dataset has been chosen as the tested domain problem. The results demonstrated that the performance of the proposed algorithm is comparable to other approaches in the literature. Indeed, the proposed algorithm obtained the best results as compared to other approaches on some instances. These results indicate the effectiveness of combining HBMO and AGVNS for solving course timetabling problems, hence demonstrated that the AGVNS can enhance the performance of HBMO.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2225-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2017-11, Vol.21 (22), p.6755-6765
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918093391
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Animal reproduction
Artificial Intelligence
Bees
Computational Intelligence
Control
Effectiveness
Energy
Engineering
Honey
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Optimization
Robotics
Search algorithms
Sperm
Workers
title An adaptive guided variable neighborhood search based on honey-bee mating optimization algorithm for the course timetabling problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20guided%20variable%20neighborhood%20search%20based%20on%20honey-bee%20mating%20optimization%20algorithm%20for%20the%20course%20timetabling%20problem&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Aziz,%20Rafidah%20Abdul&rft.date=2017-11-01&rft.volume=21&rft.issue=22&rft.spage=6755&rft.epage=6765&rft.pages=6755-6765&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2225-8&rft_dat=%3Cproquest_cross%3E2918093391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918093391&rft_id=info:pmid/&rfr_iscdi=true