A patent quality classification model based on an artificial immune system

Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The pur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2017-06, Vol.21 (11), p.2847-2856
Hauptverfasser: Tsao, Cheng-Chin, Chang, Pei-Chann, Fan, Chin-Yuan, Chang, Shu-Hao, Phillips, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2856
container_issue 11
container_start_page 2847
container_title Soft computing (Berlin, Germany)
container_volume 21
creator Tsao, Cheng-Chin
Chang, Pei-Chann
Fan, Chin-Yuan
Chang, Shu-Hao
Phillips, Fred
description Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision.
doi_str_mv 10.1007/s00500-016-2212-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918070680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918070680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</originalsourceid><addsrcrecordid>eNp1kE1LBDEMhosouK7-AG8Fz9X0Y9rpcVn8ZMGLnku305FZ5mvbzmH_vR1H8CQEkpD3TcKD0C2FewqgHiJAAUCASsIYZQTO0IoKzokSSp__1IwoKfgluorxAMCoKvgKvW3waJPvEz5Otm3SCbvWxtjUjbOpGXrcDZVv8d5GX-Hc2hwhzePGtrjpuqn3OJ5i8t01uqhtG_3Nb16jz6fHj-0L2b0_v243O-J4oRPhWmoQ1d6BdhKoYpopJ1gJjlvlWf6-drouuCx1UTFXWfCyFlKxGoBawfga3S17xzAcJx-TOQxT6PNJwzQtQYEsIavoonJhiDH42oyh6Ww4GQpmRmYWZCYjMzMyM3vY4olZ23_58Lf5f9M3DuRs_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918070680</pqid></control><display><type>article</type><title>A patent quality classification model based on an artificial immune system</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Tsao, Cheng-Chin ; Chang, Pei-Chann ; Fan, Chin-Yuan ; Chang, Shu-Hao ; Phillips, Fred</creator><creatorcontrib>Tsao, Cheng-Chin ; Chang, Pei-Chann ; Fan, Chin-Yuan ; Chang, Shu-Hao ; Phillips, Fred</creatorcontrib><description>Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2212-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Affinity ; Antibodies ; Antigens ; Artificial Intelligence ; Business competition ; Classification ; Computational Intelligence ; Control ; Decision analysis ; Engineering ; Focus ; Hybrid systems ; Immune system ; Innovations ; Literature reviews ; Litigation ; Mathematical Logic and Foundations ; Mechatronics ; Metadata ; Pathogens ; Product development ; R&amp;D ; Radio frequency identification ; Research &amp; development ; Robotics ; Trends</subject><ispartof>Soft computing (Berlin, Germany), 2017-06, Vol.21 (11), p.2847-2856</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</citedby><cites>FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2212-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918070680?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Tsao, Cheng-Chin</creatorcontrib><creatorcontrib>Chang, Pei-Chann</creatorcontrib><creatorcontrib>Fan, Chin-Yuan</creatorcontrib><creatorcontrib>Chang, Shu-Hao</creatorcontrib><creatorcontrib>Phillips, Fred</creatorcontrib><title>A patent quality classification model based on an artificial immune system</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision.</description><subject>Affinity</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Artificial Intelligence</subject><subject>Business competition</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decision analysis</subject><subject>Engineering</subject><subject>Focus</subject><subject>Hybrid systems</subject><subject>Immune system</subject><subject>Innovations</subject><subject>Literature reviews</subject><subject>Litigation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Metadata</subject><subject>Pathogens</subject><subject>Product development</subject><subject>R&amp;D</subject><subject>Radio frequency identification</subject><subject>Research &amp; development</subject><subject>Robotics</subject><subject>Trends</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LBDEMhosouK7-AG8Fz9X0Y9rpcVn8ZMGLnku305FZ5mvbzmH_vR1H8CQEkpD3TcKD0C2FewqgHiJAAUCASsIYZQTO0IoKzokSSp__1IwoKfgluorxAMCoKvgKvW3waJPvEz5Otm3SCbvWxtjUjbOpGXrcDZVv8d5GX-Hc2hwhzePGtrjpuqn3OJ5i8t01uqhtG_3Nb16jz6fHj-0L2b0_v243O-J4oRPhWmoQ1d6BdhKoYpopJ1gJjlvlWf6-drouuCx1UTFXWfCyFlKxGoBawfga3S17xzAcJx-TOQxT6PNJwzQtQYEsIavoonJhiDH42oyh6Ww4GQpmRmYWZCYjMzMyM3vY4olZ23_58Lf5f9M3DuRs_Q</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Tsao, Cheng-Chin</creator><creator>Chang, Pei-Chann</creator><creator>Fan, Chin-Yuan</creator><creator>Chang, Shu-Hao</creator><creator>Phillips, Fred</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170601</creationdate><title>A patent quality classification model based on an artificial immune system</title><author>Tsao, Cheng-Chin ; Chang, Pei-Chann ; Fan, Chin-Yuan ; Chang, Shu-Hao ; Phillips, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Artificial Intelligence</topic><topic>Business competition</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decision analysis</topic><topic>Engineering</topic><topic>Focus</topic><topic>Hybrid systems</topic><topic>Immune system</topic><topic>Innovations</topic><topic>Literature reviews</topic><topic>Litigation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Metadata</topic><topic>Pathogens</topic><topic>Product development</topic><topic>R&amp;D</topic><topic>Radio frequency identification</topic><topic>Research &amp; development</topic><topic>Robotics</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsao, Cheng-Chin</creatorcontrib><creatorcontrib>Chang, Pei-Chann</creatorcontrib><creatorcontrib>Fan, Chin-Yuan</creatorcontrib><creatorcontrib>Chang, Shu-Hao</creatorcontrib><creatorcontrib>Phillips, Fred</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsao, Cheng-Chin</au><au>Chang, Pei-Chann</au><au>Fan, Chin-Yuan</au><au>Chang, Shu-Hao</au><au>Phillips, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A patent quality classification model based on an artificial immune system</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>21</volume><issue>11</issue><spage>2847</spage><epage>2856</epage><pages>2847-2856</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2212-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2017-06, Vol.21 (11), p.2847-2856
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918070680
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Affinity
Antibodies
Antigens
Artificial Intelligence
Business competition
Classification
Computational Intelligence
Control
Decision analysis
Engineering
Focus
Hybrid systems
Immune system
Innovations
Literature reviews
Litigation
Mathematical Logic and Foundations
Mechatronics
Metadata
Pathogens
Product development
R&D
Radio frequency identification
Research & development
Robotics
Trends
title A patent quality classification model based on an artificial immune system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20patent%20quality%20classification%20model%20based%20on%20an%20artificial%20immune%20system&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Tsao,%20Cheng-Chin&rft.date=2017-06-01&rft.volume=21&rft.issue=11&rft.spage=2847&rft.epage=2856&rft.pages=2847-2856&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2212-0&rft_dat=%3Cproquest_cross%3E2918070680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918070680&rft_id=info:pmid/&rfr_iscdi=true