A patent quality classification model based on an artificial immune system
Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The pur...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2017-06, Vol.21 (11), p.2847-2856 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2856 |
---|---|
container_issue | 11 |
container_start_page | 2847 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 21 |
creator | Tsao, Cheng-Chin Chang, Pei-Chann Fan, Chin-Yuan Chang, Shu-Hao Phillips, Fred |
description | Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision. |
doi_str_mv | 10.1007/s00500-016-2212-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918070680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918070680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</originalsourceid><addsrcrecordid>eNp1kE1LBDEMhosouK7-AG8Fz9X0Y9rpcVn8ZMGLnku305FZ5mvbzmH_vR1H8CQEkpD3TcKD0C2FewqgHiJAAUCASsIYZQTO0IoKzokSSp__1IwoKfgluorxAMCoKvgKvW3waJPvEz5Otm3SCbvWxtjUjbOpGXrcDZVv8d5GX-Hc2hwhzePGtrjpuqn3OJ5i8t01uqhtG_3Nb16jz6fHj-0L2b0_v243O-J4oRPhWmoQ1d6BdhKoYpopJ1gJjlvlWf6-drouuCx1UTFXWfCyFlKxGoBawfga3S17xzAcJx-TOQxT6PNJwzQtQYEsIavoonJhiDH42oyh6Ww4GQpmRmYWZCYjMzMyM3vY4olZ23_58Lf5f9M3DuRs_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918070680</pqid></control><display><type>article</type><title>A patent quality classification model based on an artificial immune system</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Tsao, Cheng-Chin ; Chang, Pei-Chann ; Fan, Chin-Yuan ; Chang, Shu-Hao ; Phillips, Fred</creator><creatorcontrib>Tsao, Cheng-Chin ; Chang, Pei-Chann ; Fan, Chin-Yuan ; Chang, Shu-Hao ; Phillips, Fred</creatorcontrib><description>Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-016-2212-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Affinity ; Antibodies ; Antigens ; Artificial Intelligence ; Business competition ; Classification ; Computational Intelligence ; Control ; Decision analysis ; Engineering ; Focus ; Hybrid systems ; Immune system ; Innovations ; Literature reviews ; Litigation ; Mathematical Logic and Foundations ; Mechatronics ; Metadata ; Pathogens ; Product development ; R&D ; Radio frequency identification ; Research & development ; Robotics ; Trends</subject><ispartof>Soft computing (Berlin, Germany), 2017-06, Vol.21 (11), p.2847-2856</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</citedby><cites>FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-016-2212-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918070680?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Tsao, Cheng-Chin</creatorcontrib><creatorcontrib>Chang, Pei-Chann</creatorcontrib><creatorcontrib>Fan, Chin-Yuan</creatorcontrib><creatorcontrib>Chang, Shu-Hao</creatorcontrib><creatorcontrib>Phillips, Fred</creatorcontrib><title>A patent quality classification model based on an artificial immune system</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision.</description><subject>Affinity</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Artificial Intelligence</subject><subject>Business competition</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decision analysis</subject><subject>Engineering</subject><subject>Focus</subject><subject>Hybrid systems</subject><subject>Immune system</subject><subject>Innovations</subject><subject>Literature reviews</subject><subject>Litigation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Metadata</subject><subject>Pathogens</subject><subject>Product development</subject><subject>R&D</subject><subject>Radio frequency identification</subject><subject>Research & development</subject><subject>Robotics</subject><subject>Trends</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LBDEMhosouK7-AG8Fz9X0Y9rpcVn8ZMGLnku305FZ5mvbzmH_vR1H8CQEkpD3TcKD0C2FewqgHiJAAUCASsIYZQTO0IoKzokSSp__1IwoKfgluorxAMCoKvgKvW3waJPvEz5Otm3SCbvWxtjUjbOpGXrcDZVv8d5GX-Hc2hwhzePGtrjpuqn3OJ5i8t01uqhtG_3Nb16jz6fHj-0L2b0_v243O-J4oRPhWmoQ1d6BdhKoYpopJ1gJjlvlWf6-drouuCx1UTFXWfCyFlKxGoBawfga3S17xzAcJx-TOQxT6PNJwzQtQYEsIavoonJhiDH42oyh6Ww4GQpmRmYWZCYjMzMyM3vY4olZ23_58Lf5f9M3DuRs_Q</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Tsao, Cheng-Chin</creator><creator>Chang, Pei-Chann</creator><creator>Fan, Chin-Yuan</creator><creator>Chang, Shu-Hao</creator><creator>Phillips, Fred</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170601</creationdate><title>A patent quality classification model based on an artificial immune system</title><author>Tsao, Cheng-Chin ; Chang, Pei-Chann ; Fan, Chin-Yuan ; Chang, Shu-Hao ; Phillips, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-396904dbc09c60172927c4280c3a7e2221fc9f536895d2cda0e6f4672f001a423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Artificial Intelligence</topic><topic>Business competition</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decision analysis</topic><topic>Engineering</topic><topic>Focus</topic><topic>Hybrid systems</topic><topic>Immune system</topic><topic>Innovations</topic><topic>Literature reviews</topic><topic>Litigation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Metadata</topic><topic>Pathogens</topic><topic>Product development</topic><topic>R&D</topic><topic>Radio frequency identification</topic><topic>Research & development</topic><topic>Robotics</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsao, Cheng-Chin</creatorcontrib><creatorcontrib>Chang, Pei-Chann</creatorcontrib><creatorcontrib>Fan, Chin-Yuan</creatorcontrib><creatorcontrib>Chang, Shu-Hao</creatorcontrib><creatorcontrib>Phillips, Fred</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsao, Cheng-Chin</au><au>Chang, Pei-Chann</au><au>Fan, Chin-Yuan</au><au>Chang, Shu-Hao</au><au>Phillips, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A patent quality classification model based on an artificial immune system</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>21</volume><issue>11</issue><spage>2847</spage><epage>2856</epage><pages>2847-2856</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Patents are business and financial assets which can enhance a company’s competitive position. Thus, patent analysis is important for defining business strategies and supporting decision-making in organizations. However, patent analysis can involve vast data sets and are difficult to analyze. The purpose of this study is to apply artificial immune system hybrid collaborative filtering to build a patent quality classification model. We apply the model to predicting the quality of radio frequency identification patents. Using a simple definition of quality, we define each patent’s data as an antigen and then compute the affinities of the target patent to all immune networks. If the affinity is larger than a given threshold, the antibody is cloned to the related immune network. After the immune networks are constructed, they exhibit high affinity to the target patent. Finally, a series of experiments show that the proposed model can accurately predict the quality of new patents. The resulting automatic patent quality classification model provides manufacturers with improved insights into their company’s intellectual property strategy, product direction and long-term vision.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-016-2212-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2017-06, Vol.21 (11), p.2847-2856 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918070680 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Affinity Antibodies Antigens Artificial Intelligence Business competition Classification Computational Intelligence Control Decision analysis Engineering Focus Hybrid systems Immune system Innovations Literature reviews Litigation Mathematical Logic and Foundations Mechatronics Metadata Pathogens Product development R&D Radio frequency identification Research & development Robotics Trends |
title | A patent quality classification model based on an artificial immune system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20patent%20quality%20classification%20model%20based%20on%20an%20artificial%20immune%20system&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Tsao,%20Cheng-Chin&rft.date=2017-06-01&rft.volume=21&rft.issue=11&rft.spage=2847&rft.epage=2856&rft.pages=2847-2856&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-016-2212-0&rft_dat=%3Cproquest_cross%3E2918070680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918070680&rft_id=info:pmid/&rfr_iscdi=true |