RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine

The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-05, Vol.24 (10), p.7451-7458
Hauptverfasser: Sridharan, K., Komarasamy, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7458
container_issue 10
container_start_page 7451
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Sridharan, K.
Komarasamy, G.
description The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm.
doi_str_mv 10.1007/s00500-019-04370-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918067617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918067617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH7VjdlUIUKkSUglry03s1lUTFztd0K8nbRDs2MxDc8_M6CbJLYZ7DCAeIsAEIAUsU2BUQHo4S0aYUZoKJuT5qSap4IxeJlcxbgAIFhM6SppFUS6meVk8oeminOXz4hG9m7ZzTR9QtdUxOusq3Tnfon107QqtdWh8-4WCbmvfIOuDiR3qm9_JKujaHfml97E7Mo2u1q4118mF1dtobn7yOPl4Lsr8NZ2_vczy6TytMGeHVNcUW06BasIrDVJSRgyA1kZYYyxZWmOZWBKpDWeMSlHjjGS0ltzYbMJrOk7uhr274D_3_Xtq4_eh7U8qInEGXHAsehUZVFXwMQZj1S64RocvhUEdbVWDraq3VZ1sVYceogMUe3G7MuFv9T_UN17PfAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918067617</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Sridharan, K. ; Komarasamy, G.</creator><creatorcontrib>Sridharan, K. ; Komarasamy, G.</creatorcontrib><description>The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04370-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Big Data ; Computational Intelligence ; Control ; Data mining ; Datasets ; Distance learning ; Engineering ; Feature selection ; Heuristic ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methods ; Optimization ; Performance evaluation ; Robotics ; Search algorithms ; Sentiment analysis</subject><ispartof>Soft computing (Berlin, Germany), 2020-05, Vol.24 (10), p.7451-7458</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</citedby><cites>FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-04370-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918067617?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Sridharan, K.</creatorcontrib><creatorcontrib>Komarasamy, G.</creatorcontrib><title>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Distance learning</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Heuristic</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Robotics</subject><subject>Search algorithms</subject><subject>Sentiment analysis</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH7VjdlUIUKkSUglry03s1lUTFztd0K8nbRDs2MxDc8_M6CbJLYZ7DCAeIsAEIAUsU2BUQHo4S0aYUZoKJuT5qSap4IxeJlcxbgAIFhM6SppFUS6meVk8oeminOXz4hG9m7ZzTR9QtdUxOusq3Tnfon107QqtdWh8-4WCbmvfIOuDiR3qm9_JKujaHfml97E7Mo2u1q4118mF1dtobn7yOPl4Lsr8NZ2_vczy6TytMGeHVNcUW06BasIrDVJSRgyA1kZYYyxZWmOZWBKpDWeMSlHjjGS0ltzYbMJrOk7uhr274D_3_Xtq4_eh7U8qInEGXHAsehUZVFXwMQZj1S64RocvhUEdbVWDraq3VZ1sVYceogMUe3G7MuFv9T_UN17PfAE</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sridharan, K.</creator><creator>Komarasamy, G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200501</creationdate><title>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</title><author>Sridharan, K. ; Komarasamy, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Distance learning</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Heuristic</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Robotics</topic><topic>Search algorithms</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sridharan, K.</creatorcontrib><creatorcontrib>Komarasamy, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridharan, K.</au><au>Komarasamy, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>24</volume><issue>10</issue><spage>7451</spage><epage>7458</epage><pages>7451-7458</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04370-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-05, Vol.24 (10), p.7451-7458
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918067617
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial Intelligence
Big Data
Computational Intelligence
Control
Data mining
Datasets
Distance learning
Engineering
Feature selection
Heuristic
Machine learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methods
Optimization
Performance evaluation
Robotics
Search algorithms
Sentiment analysis
title RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Sentiment%20classification%20using%20harmony%20random%20forest%20and%20harmony%20gradient%20boosting%20machine&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Sridharan,%20K.&rft.date=2020-05-01&rft.volume=24&rft.issue=10&rft.spage=7451&rft.epage=7458&rft.pages=7451-7458&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04370-z&rft_dat=%3Cproquest_cross%3E2918067617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918067617&rft_id=info:pmid/&rfr_iscdi=true