RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine
The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2020-05, Vol.24 (10), p.7451-7458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7458 |
---|---|
container_issue | 10 |
container_start_page | 7451 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Sridharan, K. Komarasamy, G. |
description | The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm. |
doi_str_mv | 10.1007/s00500-019-04370-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918067617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918067617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH7VjdlUIUKkSUglry03s1lUTFztd0K8nbRDs2MxDc8_M6CbJLYZ7DCAeIsAEIAUsU2BUQHo4S0aYUZoKJuT5qSap4IxeJlcxbgAIFhM6SppFUS6meVk8oeminOXz4hG9m7ZzTR9QtdUxOusq3Tnfon107QqtdWh8-4WCbmvfIOuDiR3qm9_JKujaHfml97E7Mo2u1q4118mF1dtobn7yOPl4Lsr8NZ2_vczy6TytMGeHVNcUW06BasIrDVJSRgyA1kZYYyxZWmOZWBKpDWeMSlHjjGS0ltzYbMJrOk7uhr274D_3_Xtq4_eh7U8qInEGXHAsehUZVFXwMQZj1S64RocvhUEdbVWDraq3VZ1sVYceogMUe3G7MuFv9T_UN17PfAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918067617</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Sridharan, K. ; Komarasamy, G.</creator><creatorcontrib>Sridharan, K. ; Komarasamy, G.</creatorcontrib><description>The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04370-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Big Data ; Computational Intelligence ; Control ; Data mining ; Datasets ; Distance learning ; Engineering ; Feature selection ; Heuristic ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methods ; Optimization ; Performance evaluation ; Robotics ; Search algorithms ; Sentiment analysis</subject><ispartof>Soft computing (Berlin, Germany), 2020-05, Vol.24 (10), p.7451-7458</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</citedby><cites>FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-04370-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918067617?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Sridharan, K.</creatorcontrib><creatorcontrib>Komarasamy, G.</creatorcontrib><title>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Distance learning</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Heuristic</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Robotics</subject><subject>Search algorithms</subject><subject>Sentiment analysis</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH7VjdlUIUKkSUglry03s1lUTFztd0K8nbRDs2MxDc8_M6CbJLYZ7DCAeIsAEIAUsU2BUQHo4S0aYUZoKJuT5qSap4IxeJlcxbgAIFhM6SppFUS6meVk8oeminOXz4hG9m7ZzTR9QtdUxOusq3Tnfon107QqtdWh8-4WCbmvfIOuDiR3qm9_JKujaHfml97E7Mo2u1q4118mF1dtobn7yOPl4Lsr8NZ2_vczy6TytMGeHVNcUW06BasIrDVJSRgyA1kZYYyxZWmOZWBKpDWeMSlHjjGS0ltzYbMJrOk7uhr274D_3_Xtq4_eh7U8qInEGXHAsehUZVFXwMQZj1S64RocvhUEdbVWDraq3VZ1sVYceogMUe3G7MuFv9T_UN17PfAE</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sridharan, K.</creator><creator>Komarasamy, G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200501</creationdate><title>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</title><author>Sridharan, K. ; Komarasamy, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164z-ad31f6303a26ca099342e00aae7feef2bfef47b29ae644397d18283d96ef856d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Distance learning</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Heuristic</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Robotics</topic><topic>Search algorithms</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sridharan, K.</creatorcontrib><creatorcontrib>Komarasamy, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridharan, K.</au><au>Komarasamy, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>24</volume><issue>10</issue><spage>7451</spage><epage>7458</epage><pages>7451-7458</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The building of a system for exploring the opinions of users that are made in the blog posts, tweets, reviews or comments regarding a particular topic, policy or a product is known as sentiment analysis. The primary aim of this is the determination of the user attitude regarding a certain topic. The harmony search algorithm has proved to be extremely useful in a varied range of problems in optimization. This shows better performance compared to the other techniques of optimization. Another very powerful technique that is applied to machine learning which is now getting extremely popular is gradient boosting. There are several tree parameters which have been optimized for the random forest and the gradient boosting machine that make use of the harmony search algorithm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04370-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-05, Vol.24 (10), p.7451-7458 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918067617 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Artificial Intelligence Big Data Computational Intelligence Control Data mining Datasets Distance learning Engineering Feature selection Heuristic Machine learning Mathematical Logic and Foundations Mechatronics Methodologies and Application Methods Optimization Performance evaluation Robotics Search algorithms Sentiment analysis |
title | RETRACTED ARTICLE: Sentiment classification using harmony random forest and harmony gradient boosting machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Sentiment%20classification%20using%20harmony%20random%20forest%20and%20harmony%20gradient%20boosting%20machine&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Sridharan,%20K.&rft.date=2020-05-01&rft.volume=24&rft.issue=10&rft.spage=7451&rft.epage=7458&rft.pages=7451-7458&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04370-z&rft_dat=%3Cproquest_cross%3E2918067617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918067617&rft_id=info:pmid/&rfr_iscdi=true |