Computational localization of transcription factor binding sites using extreme learning machines

Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2012-09, Vol.16 (9), p.1595-1606
Hauptverfasser: Wang, Dianhui, Do, Hai Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1606
container_issue 9
container_start_page 1595
container_title Soft computing (Berlin, Germany)
container_volume 16
creator Wang, Dianhui
Do, Hai Thanh
description Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity.
doi_str_mv 10.1007/s00500-012-0820-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918061102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918061102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0ibtURb_geBFzzHJJmuWtqlJCquf3u5W8ORp3jzeG5gfQpcErgmAuEkAFQAGQjHUFPDuCC1IyRgWpWiOD5piwUt2is5S2gJQIiq2QO-r0A1jVtmHXrVFG4xq_fdhLYIrclR9MtEPB8Mpk0MstO_Xvt8UyWebijHttd3laDtbtFbFfm90ynz43qZzdOJUm-zF71yit_u719Ujfn55eFrdPmPDCM_YkUpwq21ZV7VVVBsKlruyYmXNOTegtWBguGucXlMthNGMm6YyZWNd0xDCluhqvjvE8DnalOU2jHH6KUnakBo4IUCnFJlTJoaUonVyiL5T8UsSkHuQcgYpJ5ByD1Lupg6dO2nK9hsb_y7_X_oBo_p4eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918061102</pqid></control><display><type>article</type><title>Computational localization of transcription factor binding sites using extreme learning machines</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Wang, Dianhui ; Do, Hai Thanh</creator><creatorcontrib>Wang, Dianhui ; Do, Hai Thanh</creatorcontrib><description>Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-012-0820-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Binding sites ; Classification ; Classifiers ; Comparative studies ; Computational Intelligence ; Control ; Datasets ; Engineering ; Focus ; Gene sequencing ; Localization ; Machine learning ; Markov analysis ; Mathematical Logic and Foundations ; Mechatronics ; Pattern recognition ; Robotics ; Support vector machines ; Transcription factors</subject><ispartof>Soft computing (Berlin, Germany), 2012-09, Vol.16 (9), p.1595-1606</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</citedby><cites>FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-012-0820-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918061102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wang, Dianhui</creatorcontrib><creatorcontrib>Do, Hai Thanh</creatorcontrib><title>Computational localization of transcription factor binding sites using extreme learning machines</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Binding sites</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Comparative studies</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Focus</subject><subject>Gene sequencing</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Pattern recognition</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Transcription factors</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0ibtURb_geBFzzHJJmuWtqlJCquf3u5W8ORp3jzeG5gfQpcErgmAuEkAFQAGQjHUFPDuCC1IyRgWpWiOD5piwUt2is5S2gJQIiq2QO-r0A1jVtmHXrVFG4xq_fdhLYIrclR9MtEPB8Mpk0MstO_Xvt8UyWebijHttd3laDtbtFbFfm90ynz43qZzdOJUm-zF71yit_u719Ujfn55eFrdPmPDCM_YkUpwq21ZV7VVVBsKlruyYmXNOTegtWBguGucXlMthNGMm6YyZWNd0xDCluhqvjvE8DnalOU2jHH6KUnakBo4IUCnFJlTJoaUonVyiL5T8UsSkHuQcgYpJ5ByD1Lupg6dO2nK9hsb_y7_X_oBo_p4eA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Wang, Dianhui</creator><creator>Do, Hai Thanh</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120901</creationdate><title>Computational localization of transcription factor binding sites using extreme learning machines</title><author>Wang, Dianhui ; Do, Hai Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Binding sites</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Comparative studies</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Focus</topic><topic>Gene sequencing</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Pattern recognition</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dianhui</creatorcontrib><creatorcontrib>Do, Hai Thanh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dianhui</au><au>Do, Hai Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational localization of transcription factor binding sites using extreme learning machines</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>16</volume><issue>9</issue><spage>1595</spage><epage>1606</epage><pages>1595-1606</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00500-012-0820-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2012-09, Vol.16 (9), p.1595-1606
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918061102
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Binding sites
Classification
Classifiers
Comparative studies
Computational Intelligence
Control
Datasets
Engineering
Focus
Gene sequencing
Localization
Machine learning
Markov analysis
Mathematical Logic and Foundations
Mechatronics
Pattern recognition
Robotics
Support vector machines
Transcription factors
title Computational localization of transcription factor binding sites using extreme learning machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20localization%20of%20transcription%20factor%20binding%20sites%20using%20extreme%20learning%20machines&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Wang,%20Dianhui&rft.date=2012-09-01&rft.volume=16&rft.issue=9&rft.spage=1595&rft.epage=1606&rft.pages=1595-1606&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-012-0820-x&rft_dat=%3Cproquest_cross%3E2918061102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918061102&rft_id=info:pmid/&rfr_iscdi=true