Computational localization of transcription factor binding sites using extreme learning machines
Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is re...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2012-09, Vol.16 (9), p.1595-1606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1606 |
---|---|
container_issue | 9 |
container_start_page | 1595 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 16 |
creator | Wang, Dianhui Do, Hai Thanh |
description | Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity. |
doi_str_mv | 10.1007/s00500-012-0820-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918061102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918061102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0ibtURb_geBFzzHJJmuWtqlJCquf3u5W8ORp3jzeG5gfQpcErgmAuEkAFQAGQjHUFPDuCC1IyRgWpWiOD5piwUt2is5S2gJQIiq2QO-r0A1jVtmHXrVFG4xq_fdhLYIrclR9MtEPB8Mpk0MstO_Xvt8UyWebijHttd3laDtbtFbFfm90ynz43qZzdOJUm-zF71yit_u719Ujfn55eFrdPmPDCM_YkUpwq21ZV7VVVBsKlruyYmXNOTegtWBguGucXlMthNGMm6YyZWNd0xDCluhqvjvE8DnalOU2jHH6KUnakBo4IUCnFJlTJoaUonVyiL5T8UsSkHuQcgYpJ5ByD1Lupg6dO2nK9hsb_y7_X_oBo_p4eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918061102</pqid></control><display><type>article</type><title>Computational localization of transcription factor binding sites using extreme learning machines</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Wang, Dianhui ; Do, Hai Thanh</creator><creatorcontrib>Wang, Dianhui ; Do, Hai Thanh</creatorcontrib><description>Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-012-0820-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Binding sites ; Classification ; Classifiers ; Comparative studies ; Computational Intelligence ; Control ; Datasets ; Engineering ; Focus ; Gene sequencing ; Localization ; Machine learning ; Markov analysis ; Mathematical Logic and Foundations ; Mechatronics ; Pattern recognition ; Robotics ; Support vector machines ; Transcription factors</subject><ispartof>Soft computing (Berlin, Germany), 2012-09, Vol.16 (9), p.1595-1606</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</citedby><cites>FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-012-0820-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918061102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wang, Dianhui</creatorcontrib><creatorcontrib>Do, Hai Thanh</creatorcontrib><title>Computational localization of transcription factor binding sites using extreme learning machines</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Binding sites</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Comparative studies</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Focus</subject><subject>Gene sequencing</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Pattern recognition</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Transcription factors</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0ibtURb_geBFzzHJJmuWtqlJCquf3u5W8ORp3jzeG5gfQpcErgmAuEkAFQAGQjHUFPDuCC1IyRgWpWiOD5piwUt2is5S2gJQIiq2QO-r0A1jVtmHXrVFG4xq_fdhLYIrclR9MtEPB8Mpk0MstO_Xvt8UyWebijHttd3laDtbtFbFfm90ynz43qZzdOJUm-zF71yit_u719Ujfn55eFrdPmPDCM_YkUpwq21ZV7VVVBsKlruyYmXNOTegtWBguGucXlMthNGMm6YyZWNd0xDCluhqvjvE8DnalOU2jHH6KUnakBo4IUCnFJlTJoaUonVyiL5T8UsSkHuQcgYpJ5ByD1Lupg6dO2nK9hsb_y7_X_oBo_p4eA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Wang, Dianhui</creator><creator>Do, Hai Thanh</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120901</creationdate><title>Computational localization of transcription factor binding sites using extreme learning machines</title><author>Wang, Dianhui ; Do, Hai Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f1576ebe4858ea2bc20e6f45348666c0bb730c6f9fbd2b77cb36c95c49ef99113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Binding sites</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Comparative studies</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Focus</topic><topic>Gene sequencing</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Pattern recognition</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dianhui</creatorcontrib><creatorcontrib>Do, Hai Thanh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dianhui</au><au>Do, Hai Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational localization of transcription factor binding sites using extreme learning machines</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>16</volume><issue>9</issue><spage>1595</spage><epage>1606</epage><pages>1595-1606</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Computational localization of transcription factor binding sites (TFBSs, also termed as motif instances) in DNA sequences greatly helps biologists in saving experimental cost and time for motif discovery. The task can be formulated as feature-based object location identification problem, which is remarkably different from traditional pattern recognition tasks. This paper aims to develop a machine learning approach for TFBSs location prediction through feature-based classifiers. Some specific features are extracted to characterize and distinguish the TFBSs from random k-mers. Then, a sampling technique is employed to generate dummy positives in the feature space for achieving better prediction performance. Three learner models are examined and a simple ensemble method is adopted in our classifiers design. Experimental results on eight benchmark datasets demonstrate that our proposed techniques have good potential for conserved motif detections. Comparative studies indicate that the extreme learning machine-based ensemble classifier outperforms the other learner models in terms of overall prediction accuracy and computational complexity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00500-012-0820-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2012-09, Vol.16 (9), p.1595-1606 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918061102 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Artificial Intelligence Artificial neural networks Binding sites Classification Classifiers Comparative studies Computational Intelligence Control Datasets Engineering Focus Gene sequencing Localization Machine learning Markov analysis Mathematical Logic and Foundations Mechatronics Pattern recognition Robotics Support vector machines Transcription factors |
title | Computational localization of transcription factor binding sites using extreme learning machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20localization%20of%20transcription%20factor%20binding%20sites%20using%20extreme%20learning%20machines&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Wang,%20Dianhui&rft.date=2012-09-01&rft.volume=16&rft.issue=9&rft.spage=1595&rft.epage=1606&rft.pages=1595-1606&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-012-0820-x&rft_dat=%3Cproquest_cross%3E2918061102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918061102&rft_id=info:pmid/&rfr_iscdi=true |