Neutrosophic linear programming using possibilistic mean

The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α , β , γ - cut of single-valued triangular neutrosophic numbers and introduces the ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-11, Vol.24 (22), p.16847-16867
1. Verfasser: Khatter, Kiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16867
container_issue 22
container_start_page 16847
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Khatter, Kiran
description The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α , β , γ - cut of single-valued triangular neutrosophic numbers and introduces the arithmetic operations of triangular neutrosophic numbers using α , β , γ - cut. Then, possibilistic mean of truth membership function, indeterminacy membership function and falsity membership function is defined. The proposed approach converts each triangular neutrosophic number in linear programming problem to weighted value using possibilistic mean to determine the crisp linear programming problem. The proposed approach also considers the risk attitude of expert while deciding the parameters of linear programming model.
doi_str_mv 10.1007/s00500-020-04980-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918058896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918058896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2e493540a85f06c479a4cebd809a3a593ca6cfcd7634d02b2f98d0067c0dc4193</originalsourceid><addsrcrecordid>eNp9ULtOxDAQtBBIHAc_QBWJ2rB-JLZLdAIO6QQN1JbjOMGnywM7KfL3-C5IdBT7KGZmZwehWwL3BEA8RIAcAANNxZUEPJ-hFeGMYcGFOj_tFIuCs0t0FeMegBKRsxWSb24aQx_74cvb7OA7Z0I2hL4Jpm1912RTPPahj9GX_uDjmGCtM901uqjNIbqb37lGn89PH5st3r2_vG4ed9gyokZMHVcs52BkXkNhkxnDrSsrCcowkytmTWFrW4mC8QpoSWslK4BCWKgsJ4qt0d2im0x9Ty6Oet9PoUsnNVVEQi6lKhKKLiibfonB1XoIvjVh1gT0MSG9JKRTQvqUkJ4TiS2kmMBd48Kf9D-sHyitaZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918058896</pqid></control><display><type>article</type><title>Neutrosophic linear programming using possibilistic mean</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Khatter, Kiran</creator><creatorcontrib>Khatter, Kiran</creatorcontrib><description>The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α , β , γ - cut of single-valued triangular neutrosophic numbers and introduces the arithmetic operations of triangular neutrosophic numbers using α , β , γ - cut. Then, possibilistic mean of truth membership function, indeterminacy membership function and falsity membership function is defined. The proposed approach converts each triangular neutrosophic number in linear programming problem to weighted value using possibilistic mean to determine the crisp linear programming problem. The proposed approach also considers the risk attitude of expert while deciding the parameters of linear programming model.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-04980-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Decision making ; Engineering ; Fuzzy set theory ; Fuzzy sets ; Linear programming ; Mathematical Logic and Foundations ; Mathematical programming ; Mechatronics ; Methodologies and Application ; Numbers ; Optimization techniques ; Programming languages ; Researchers ; Robotics ; Set theory</subject><ispartof>Soft computing (Berlin, Germany), 2020-11, Vol.24 (22), p.16847-16867</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2e493540a85f06c479a4cebd809a3a593ca6cfcd7634d02b2f98d0067c0dc4193</citedby><cites>FETCH-LOGICAL-c319t-2e493540a85f06c479a4cebd809a3a593ca6cfcd7634d02b2f98d0067c0dc4193</cites><orcidid>0000-0002-1000-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-020-04980-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918058896?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Khatter, Kiran</creatorcontrib><title>Neutrosophic linear programming using possibilistic mean</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α , β , γ - cut of single-valued triangular neutrosophic numbers and introduces the arithmetic operations of triangular neutrosophic numbers using α , β , γ - cut. Then, possibilistic mean of truth membership function, indeterminacy membership function and falsity membership function is defined. The proposed approach converts each triangular neutrosophic number in linear programming problem to weighted value using possibilistic mean to determine the crisp linear programming problem. The proposed approach also considers the risk attitude of expert while deciding the parameters of linear programming model.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Linear programming</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical programming</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Numbers</subject><subject>Optimization techniques</subject><subject>Programming languages</subject><subject>Researchers</subject><subject>Robotics</subject><subject>Set theory</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ULtOxDAQtBBIHAc_QBWJ2rB-JLZLdAIO6QQN1JbjOMGnywM7KfL3-C5IdBT7KGZmZwehWwL3BEA8RIAcAANNxZUEPJ-hFeGMYcGFOj_tFIuCs0t0FeMegBKRsxWSb24aQx_74cvb7OA7Z0I2hL4Jpm1912RTPPahj9GX_uDjmGCtM901uqjNIbqb37lGn89PH5st3r2_vG4ed9gyokZMHVcs52BkXkNhkxnDrSsrCcowkytmTWFrW4mC8QpoSWslK4BCWKgsJ4qt0d2im0x9Ty6Oet9PoUsnNVVEQi6lKhKKLiibfonB1XoIvjVh1gT0MSG9JKRTQvqUkJ4TiS2kmMBd48Kf9D-sHyitaZg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Khatter, Kiran</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-1000-6102</orcidid></search><sort><creationdate>20201101</creationdate><title>Neutrosophic linear programming using possibilistic mean</title><author>Khatter, Kiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2e493540a85f06c479a4cebd809a3a593ca6cfcd7634d02b2f98d0067c0dc4193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Linear programming</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical programming</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Numbers</topic><topic>Optimization techniques</topic><topic>Programming languages</topic><topic>Researchers</topic><topic>Robotics</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatter, Kiran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatter, Kiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutrosophic linear programming using possibilistic mean</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>24</volume><issue>22</issue><spage>16847</spage><epage>16867</epage><pages>16847-16867</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α , β , γ - cut of single-valued triangular neutrosophic numbers and introduces the arithmetic operations of triangular neutrosophic numbers using α , β , γ - cut. Then, possibilistic mean of truth membership function, indeterminacy membership function and falsity membership function is defined. The proposed approach converts each triangular neutrosophic number in linear programming problem to weighted value using possibilistic mean to determine the crisp linear programming problem. The proposed approach also considers the risk attitude of expert while deciding the parameters of linear programming model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-04980-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1000-6102</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-11, Vol.24 (22), p.16847-16867
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918058896
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Computational Intelligence
Control
Decision making
Engineering
Fuzzy set theory
Fuzzy sets
Linear programming
Mathematical Logic and Foundations
Mathematical programming
Mechatronics
Methodologies and Application
Numbers
Optimization techniques
Programming languages
Researchers
Robotics
Set theory
title Neutrosophic linear programming using possibilistic mean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutrosophic%20linear%20programming%20using%20possibilistic%20mean&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Khatter,%20Kiran&rft.date=2020-11-01&rft.volume=24&rft.issue=22&rft.spage=16847&rft.epage=16867&rft.pages=16847-16867&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-04980-y&rft_dat=%3Cproquest_cross%3E2918058896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918058896&rft_id=info:pmid/&rfr_iscdi=true