Multiple-process procedural texture

Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation popula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2017-12, Vol.33 (12), p.1511-1528
1. Verfasser: Ibrahim, Alaa Eldin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1528
container_issue 12
container_start_page 1511
container_title The Visual computer
container_volume 33
creator Ibrahim, Alaa Eldin M.
description Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation.
doi_str_mv 10.1007/s00371-016-1295-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918058763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918058763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f841a61a261f3ff587c59828dc1941207adcc8e22e3e1f0190ddd9e9f99859f83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFuh5-hMsrtJjlL8BxUveg4hmUjL2l2TXdB-elNX8OTp8eC9N8OPsUuEKwRQ1xlAKuSADUdhar4_YjOspOBCYn3MZoBKc6G0OWVnOW-heFWZGVs-je2w6Vvifeo85bz40TAm1y4G-hzGROfsJLo208Wvztnr3e3L6oGvn-8fVzdr7qXUA4-6QtegEw1GGWOtla-NFjp4NBUKUC54r0kIkoQR0EAIwZCJxujaRC3nbDntlhc-RsqD3XZj2pWTVhjUUBYbWVI4pXzqck4UbZ827y59WQR7YGEnFrawsAcWdl86Yurkkt29Ufpb_r_0Db6bYO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918058763</pqid></control><display><type>article</type><title>Multiple-process procedural texture</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ibrahim, Alaa Eldin M.</creator><creatorcontrib>Ibrahim, Alaa Eldin M.</creatorcontrib><description>Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-016-1295-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aging (natural) ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Fitness ; Genetic algorithms ; Hybrid systems ; Image Processing and Computer Vision ; Modules ; Monte Carlo simulation ; Original Article ; Search algorithms ; Special effects ; Trees</subject><ispartof>The Visual computer, 2017-12, Vol.33 (12), p.1511-1528</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-f841a61a261f3ff587c59828dc1941207adcc8e22e3e1f0190ddd9e9f99859f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-016-1295-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918058763?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ibrahim, Alaa Eldin M.</creatorcontrib><title>Multiple-process procedural texture</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation.</description><subject>Aging (natural)</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>Hybrid systems</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Monte Carlo simulation</subject><subject>Original Article</subject><subject>Search algorithms</subject><subject>Special effects</subject><subject>Trees</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFuh5-hMsrtJjlL8BxUveg4hmUjL2l2TXdB-elNX8OTp8eC9N8OPsUuEKwRQ1xlAKuSADUdhar4_YjOspOBCYn3MZoBKc6G0OWVnOW-heFWZGVs-je2w6Vvifeo85bz40TAm1y4G-hzGROfsJLo208Wvztnr3e3L6oGvn-8fVzdr7qXUA4-6QtegEw1GGWOtla-NFjp4NBUKUC54r0kIkoQR0EAIwZCJxujaRC3nbDntlhc-RsqD3XZj2pWTVhjUUBYbWVI4pXzqck4UbZ827y59WQR7YGEnFrawsAcWdl86Yurkkt29Ufpb_r_0Db6bYO4</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ibrahim, Alaa Eldin M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>Multiple-process procedural texture</title><author>Ibrahim, Alaa Eldin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f841a61a261f3ff587c59828dc1941207adcc8e22e3e1f0190ddd9e9f99859f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging (natural)</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>Hybrid systems</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Monte Carlo simulation</topic><topic>Original Article</topic><topic>Search algorithms</topic><topic>Special effects</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Alaa Eldin M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim, Alaa Eldin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-process procedural texture</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>33</volume><issue>12</issue><spage>1511</spage><epage>1528</epage><pages>1511-1528</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-016-1295-z</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2017-12, Vol.33 (12), p.1511-1528
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918058763
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Aging (natural)
Artificial Intelligence
Computer Graphics
Computer Science
Fitness
Genetic algorithms
Hybrid systems
Image Processing and Computer Vision
Modules
Monte Carlo simulation
Original Article
Search algorithms
Special effects
Trees
title Multiple-process procedural texture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-process%20procedural%20texture&rft.jtitle=The%20Visual%20computer&rft.au=Ibrahim,%20Alaa%20Eldin%20M.&rft.date=2017-12-01&rft.volume=33&rft.issue=12&rft.spage=1511&rft.epage=1528&rft.pages=1511-1528&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-016-1295-z&rft_dat=%3Cproquest_cross%3E2918058763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918058763&rft_id=info:pmid/&rfr_iscdi=true