Multiple-process procedural texture
Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation popula...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2017-12, Vol.33 (12), p.1511-1528 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1528 |
---|---|
container_issue | 12 |
container_start_page | 1511 |
container_title | The Visual computer |
container_volume | 33 |
creator | Ibrahim, Alaa Eldin M. |
description | Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation. |
doi_str_mv | 10.1007/s00371-016-1295-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918058763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918058763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f841a61a261f3ff587c59828dc1941207adcc8e22e3e1f0190ddd9e9f99859f83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFuh5-hMsrtJjlL8BxUveg4hmUjL2l2TXdB-elNX8OTp8eC9N8OPsUuEKwRQ1xlAKuSADUdhar4_YjOspOBCYn3MZoBKc6G0OWVnOW-heFWZGVs-je2w6Vvifeo85bz40TAm1y4G-hzGROfsJLo208Wvztnr3e3L6oGvn-8fVzdr7qXUA4-6QtegEw1GGWOtla-NFjp4NBUKUC54r0kIkoQR0EAIwZCJxujaRC3nbDntlhc-RsqD3XZj2pWTVhjUUBYbWVI4pXzqck4UbZ827y59WQR7YGEnFrawsAcWdl86Yurkkt29Ufpb_r_0Db6bYO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918058763</pqid></control><display><type>article</type><title>Multiple-process procedural texture</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ibrahim, Alaa Eldin M.</creator><creatorcontrib>Ibrahim, Alaa Eldin M.</creatorcontrib><description>Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-016-1295-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aging (natural) ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Fitness ; Genetic algorithms ; Hybrid systems ; Image Processing and Computer Vision ; Modules ; Monte Carlo simulation ; Original Article ; Search algorithms ; Special effects ; Trees</subject><ispartof>The Visual computer, 2017-12, Vol.33 (12), p.1511-1528</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-f841a61a261f3ff587c59828dc1941207adcc8e22e3e1f0190ddd9e9f99859f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-016-1295-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918058763?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ibrahim, Alaa Eldin M.</creatorcontrib><title>Multiple-process procedural texture</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation.</description><subject>Aging (natural)</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>Hybrid systems</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Monte Carlo simulation</subject><subject>Original Article</subject><subject>Search algorithms</subject><subject>Special effects</subject><subject>Trees</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFuh5-hMsrtJjlL8BxUveg4hmUjL2l2TXdB-elNX8OTp8eC9N8OPsUuEKwRQ1xlAKuSADUdhar4_YjOspOBCYn3MZoBKc6G0OWVnOW-heFWZGVs-je2w6Vvifeo85bz40TAm1y4G-hzGROfsJLo208Wvztnr3e3L6oGvn-8fVzdr7qXUA4-6QtegEw1GGWOtla-NFjp4NBUKUC54r0kIkoQR0EAIwZCJxujaRC3nbDntlhc-RsqD3XZj2pWTVhjUUBYbWVI4pXzqck4UbZ827y59WQR7YGEnFrawsAcWdl86Yurkkt29Ufpb_r_0Db6bYO4</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ibrahim, Alaa Eldin M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>Multiple-process procedural texture</title><author>Ibrahim, Alaa Eldin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f841a61a261f3ff587c59828dc1941207adcc8e22e3e1f0190ddd9e9f99859f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging (natural)</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>Hybrid systems</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Monte Carlo simulation</topic><topic>Original Article</topic><topic>Search algorithms</topic><topic>Special effects</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Alaa Eldin M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim, Alaa Eldin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-process procedural texture</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>33</volume><issue>12</issue><spage>1511</spage><epage>1528</epage><pages>1511-1528</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Our newly developed generation of procedural textures (GPT) system automatically generates procedural textures for the computer graphics industry. The system makes use of hybrid parallel Monte Carlo tree search and gender-based genetic algorithm modules that share a common multiple-generation population of procedural textures and a knowledge database. It also uses a multi-objective fitness function. The parallel Monte Carlo tree search module was inspired by gaming algorithms. To speed up the search, this module is enhanced with knowledge from previous successfully created procedural textures or tree node analyses. The gender-based genetic algorithm module automatically simulates several key features in natural selection and uses a multiple-generation breeding population, the notion of gender, and the concept of aging. This maintains diversity while providing many breeding opportunities for highly successful offspring. A third module selects generated shaders from the multiple-generation population and mutates them by replacing nodes with subtrees using the knowledge database. We evaluated the fitness quality of each module and compared the fitness quality of the system running in both single- and multiple-process mode. The optimal fitness quality was achieved by executing the system in multiple-process mode using a hybrid of these modules. We give examples of the GPT running in interactive mode, where a user directs the search towards the desired look using an esthetic evaluation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-016-1295-z</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2017-12, Vol.33 (12), p.1511-1528 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918058763 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Aging (natural) Artificial Intelligence Computer Graphics Computer Science Fitness Genetic algorithms Hybrid systems Image Processing and Computer Vision Modules Monte Carlo simulation Original Article Search algorithms Special effects Trees |
title | Multiple-process procedural texture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-process%20procedural%20texture&rft.jtitle=The%20Visual%20computer&rft.au=Ibrahim,%20Alaa%20Eldin%20M.&rft.date=2017-12-01&rft.volume=33&rft.issue=12&rft.spage=1511&rft.epage=1528&rft.pages=1511-1528&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-016-1295-z&rft_dat=%3Cproquest_cross%3E2918058763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918058763&rft_id=info:pmid/&rfr_iscdi=true |