Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations

A recent paper was dedicated to find the nearest fuzzy triangular approximations of a fuzzy number by using α-weighted valuations. We prove, by simple examples, that the results of approximations are not always triangular fuzzy numbers and that in fact they are not fuzzy sets. We give a correct solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2011-02, Vol.15 (2), p.351-361
1. Verfasser: Ban, Adrian I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 2
container_start_page 351
container_title Soft computing (Berlin, Germany)
container_volume 15
creator Ban, Adrian I.
description A recent paper was dedicated to find the nearest fuzzy triangular approximations of a fuzzy number by using α-weighted valuations. We prove, by simple examples, that the results of approximations are not always triangular fuzzy numbers and that in fact they are not fuzzy sets. We give a correct solution of the problem of approximation in a more general case, and we study the properties of identity, additivity, translation invariance, scale invariance, and monotonicity of the new approximation operator.
doi_str_mv 10.1007/s00500-010-0620-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918057421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918057421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-73ffd920f16ab3b6bf838ac90afb90d8966804f1f378cef89afc2edcba1ddf493</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqVwAHaWWAfGdhrHS1QBRaqEhGBtOY4nTWmTYidAeysuwplwCRIrFvNYfP88fkLOGVwyAHkVACYACbAYGY_pgIxYKkQiU6kOf3qeyCwVx-QkhCUAZ3IiRgQf3dr4l0BNU1Lbeu9sV7dNoF1Lu4Wjna9NU_Ur46nZbHz7Ua_NALRIsd_ttrTp14Xzgfahbir69Zm8u7padK6kb2bVD_QpOUKzCu7st47J8-3N03SWzB_u7qfX88QKlnWJFIil4oAsM4UosgJzkRurwGChoMxVluWQIkMhc-swVwYtd6UtDCtLTJUYk4thbjz1tXeh08u2901cqbliOUxkylmk2EBZ34bgHeqNj3_5rWag93bqwU4d7dR7OzVEDR80IbJN5fzf5P9F36iEe4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918057421</pqid></control><display><type>article</type><title>Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ban, Adrian I.</creator><creatorcontrib>Ban, Adrian I.</creatorcontrib><description>A recent paper was dedicated to find the nearest fuzzy triangular approximations of a fuzzy number by using α-weighted valuations. We prove, by simple examples, that the results of approximations are not always triangular fuzzy numbers and that in fact they are not fuzzy sets. We give a correct solution of the problem of approximation in a more general case, and we study the properties of identity, additivity, translation invariance, scale invariance, and monotonicity of the new approximation operator.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-010-0620-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Approximation ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Fuzzy sets ; Fuzzy systems ; Invariance ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematical programming ; Mechatronics ; Original Paper ; Robotics ; Scale invariance ; Valuation</subject><ispartof>Soft computing (Berlin, Germany), 2011-02, Vol.15 (2), p.351-361</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-73ffd920f16ab3b6bf838ac90afb90d8966804f1f378cef89afc2edcba1ddf493</citedby><cites>FETCH-LOGICAL-c316t-73ffd920f16ab3b6bf838ac90afb90d8966804f1f378cef89afc2edcba1ddf493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-010-0620-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918057421?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Ban, Adrian I.</creatorcontrib><title>Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>A recent paper was dedicated to find the nearest fuzzy triangular approximations of a fuzzy number by using α-weighted valuations. We prove, by simple examples, that the results of approximations are not always triangular fuzzy numbers and that in fact they are not fuzzy sets. We give a correct solution of the problem of approximation in a more general case, and we study the properties of identity, additivity, translation invariance, scale invariance, and monotonicity of the new approximation operator.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Invariance</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical programming</subject><subject>Mechatronics</subject><subject>Original Paper</subject><subject>Robotics</subject><subject>Scale invariance</subject><subject>Valuation</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtOwzAQhi0EEqVwAHaWWAfGdhrHS1QBRaqEhGBtOY4nTWmTYidAeysuwplwCRIrFvNYfP88fkLOGVwyAHkVACYACbAYGY_pgIxYKkQiU6kOf3qeyCwVx-QkhCUAZ3IiRgQf3dr4l0BNU1Lbeu9sV7dNoF1Lu4Wjna9NU_Ur46nZbHz7Ua_NALRIsd_ttrTp14Xzgfahbir69Zm8u7padK6kb2bVD_QpOUKzCu7st47J8-3N03SWzB_u7qfX88QKlnWJFIil4oAsM4UosgJzkRurwGChoMxVluWQIkMhc-swVwYtd6UtDCtLTJUYk4thbjz1tXeh08u2901cqbliOUxkylmk2EBZ34bgHeqNj3_5rWag93bqwU4d7dR7OzVEDR80IbJN5fzf5P9F36iEe4o</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Ban, Adrian I.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20110201</creationdate><title>Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations</title><author>Ban, Adrian I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-73ffd920f16ab3b6bf838ac90afb90d8966804f1f378cef89afc2edcba1ddf493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Invariance</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical programming</topic><topic>Mechatronics</topic><topic>Original Paper</topic><topic>Robotics</topic><topic>Scale invariance</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ban, Adrian I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ban, Adrian I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>15</volume><issue>2</issue><spage>351</spage><epage>361</epage><pages>351-361</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>A recent paper was dedicated to find the nearest fuzzy triangular approximations of a fuzzy number by using α-weighted valuations. We prove, by simple examples, that the results of approximations are not always triangular fuzzy numbers and that in fact they are not fuzzy sets. We give a correct solution of the problem of approximation in a more general case, and we study the properties of identity, additivity, translation invariance, scale invariance, and monotonicity of the new approximation operator.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00500-010-0620-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2011-02, Vol.15 (2), p.351-361
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918057421
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Approximation
Artificial Intelligence
Computational Intelligence
Control
Engineering
Fuzzy sets
Fuzzy systems
Invariance
Mathematical analysis
Mathematical Logic and Foundations
Mathematical programming
Mechatronics
Original Paper
Robotics
Scale invariance
Valuation
title Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarks%20and%20corrections%20to%20the%20triangular%20approximations%20of%20fuzzy%20numbers%20using%20%CE%B1-weighted%20valuations&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Ban,%20Adrian%20I.&rft.date=2011-02-01&rft.volume=15&rft.issue=2&rft.spage=351&rft.epage=361&rft.pages=351-361&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-010-0620-0&rft_dat=%3Cproquest_cross%3E2918057421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918057421&rft_id=info:pmid/&rfr_iscdi=true