Reparameterization of piecewise rational Bezier curves and its applications

degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2001-08, Vol.17 (6), p.329-336
Hauptverfasser: Tokuyama, Yoshimasa, Konno, Kouichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 6
container_start_page 329
container_title The Visual computer
container_volume 17
creator Tokuyama, Yoshimasa
Konno, Kouichi
description degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown.
doi_str_mv 10.1007/s003710100110330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918055251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918055251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-3fc0265261fd5ec0f08f135ef2dbc5fac521129ca03f499067bc25b05e330c0e3</originalsourceid><addsrcrecordid>eNpdkEFLxDAQhYMouK7ePQY8V2eSpmmOuugqLgii55KmE8jS3dakVdxfb9315Ok9ho_Hm8fYJcI1AuibBCA1wuQRQUo4YjPMpciERHXMZoC6zIQuzSk7S2k9UVrnZsaeX6m30W5ooBh2dgjdlnee94EcfYVEPO5vtuV3tAsUuRvjJyVutw0Pw6R93wa3Z9I5O_G2TXTxp3P2_nD_tnjMVi_Lp8XtKnOiMEMmvQNRKFGgbxQ58FB6lIq8aGqnvHVKIArjLEifGwOFrp1QNSia3nJAcs6uDrl97D5GSkO17sY4dUyVMFiCUkLhRMGBcrFLKZKv-hg2Nn5XCNXvZNX_yeQPBjFejQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918055251</pqid></control><display><type>article</type><title>Reparameterization of piecewise rational Bezier curves and its applications</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Tokuyama, Yoshimasa ; Konno, Kouichi</creator><creatorcontrib>Tokuyama, Yoshimasa ; Konno, Kouichi</creatorcontrib><description>degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s003710100110330</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>B spline functions ; Basis functions ; Continuity (mathematics) ; Curves ; Knots ; Segments</subject><ispartof>The Visual computer, 2001-08, Vol.17 (6), p.329-336</ispartof><rights>Springer-Verlag 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-3fc0265261fd5ec0f08f135ef2dbc5fac521129ca03f499067bc25b05e330c0e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918055251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,43784,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Tokuyama, Yoshimasa</creatorcontrib><creatorcontrib>Konno, Kouichi</creatorcontrib><title>Reparameterization of piecewise rational Bezier curves and its applications</title><title>The Visual computer</title><description>degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown.</description><subject>B spline functions</subject><subject>Basis functions</subject><subject>Continuity (mathematics)</subject><subject>Curves</subject><subject>Knots</subject><subject>Segments</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkEFLxDAQhYMouK7ePQY8V2eSpmmOuugqLgii55KmE8jS3dakVdxfb9315Ok9ho_Hm8fYJcI1AuibBCA1wuQRQUo4YjPMpciERHXMZoC6zIQuzSk7S2k9UVrnZsaeX6m30W5ooBh2dgjdlnee94EcfYVEPO5vtuV3tAsUuRvjJyVutw0Pw6R93wa3Z9I5O_G2TXTxp3P2_nD_tnjMVi_Lp8XtKnOiMEMmvQNRKFGgbxQ58FB6lIq8aGqnvHVKIArjLEifGwOFrp1QNSia3nJAcs6uDrl97D5GSkO17sY4dUyVMFiCUkLhRMGBcrFLKZKv-hg2Nn5XCNXvZNX_yeQPBjFejQ</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Tokuyama, Yoshimasa</creator><creator>Konno, Kouichi</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20010801</creationdate><title>Reparameterization of piecewise rational Bezier curves and its applications</title><author>Tokuyama, Yoshimasa ; Konno, Kouichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-3fc0265261fd5ec0f08f135ef2dbc5fac521129ca03f499067bc25b05e330c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>B spline functions</topic><topic>Basis functions</topic><topic>Continuity (mathematics)</topic><topic>Curves</topic><topic>Knots</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokuyama, Yoshimasa</creatorcontrib><creatorcontrib>Konno, Kouichi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokuyama, Yoshimasa</au><au>Konno, Kouichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reparameterization of piecewise rational Bezier curves and its applications</atitle><jtitle>The Visual computer</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>17</volume><issue>6</issue><spage>329</spage><epage>336</epage><pages>329-336</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s003710100110330</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2001-08, Vol.17 (6), p.329-336
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918055251
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects B spline functions
Basis functions
Continuity (mathematics)
Curves
Knots
Segments
title Reparameterization of piecewise rational Bezier curves and its applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reparameterization%20of%20piecewise%20rational%20Bezier%20curves%20and%20its%20applications&rft.jtitle=The%20Visual%20computer&rft.au=Tokuyama,%20Yoshimasa&rft.date=2001-08-01&rft.volume=17&rft.issue=6&rft.spage=329&rft.epage=336&rft.pages=329-336&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s003710100110330&rft_dat=%3Cproquest_cross%3E2918055251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918055251&rft_id=info:pmid/&rfr_iscdi=true