Reparameterization of piecewise rational Bezier curves and its applications
degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning t...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2001-08, Vol.17 (6), p.329-336 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 6 |
container_start_page | 329 |
container_title | The Visual computer |
container_volume | 17 |
creator | Tokuyama, Yoshimasa Konno, Kouichi |
description | degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown. |
doi_str_mv | 10.1007/s003710100110330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918055251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918055251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-3fc0265261fd5ec0f08f135ef2dbc5fac521129ca03f499067bc25b05e330c0e3</originalsourceid><addsrcrecordid>eNpdkEFLxDAQhYMouK7ePQY8V2eSpmmOuugqLgii55KmE8jS3dakVdxfb9315Ok9ho_Hm8fYJcI1AuibBCA1wuQRQUo4YjPMpciERHXMZoC6zIQuzSk7S2k9UVrnZsaeX6m30W5ooBh2dgjdlnee94EcfYVEPO5vtuV3tAsUuRvjJyVutw0Pw6R93wa3Z9I5O_G2TXTxp3P2_nD_tnjMVi_Lp8XtKnOiMEMmvQNRKFGgbxQ58FB6lIq8aGqnvHVKIArjLEifGwOFrp1QNSia3nJAcs6uDrl97D5GSkO17sY4dUyVMFiCUkLhRMGBcrFLKZKv-hg2Nn5XCNXvZNX_yeQPBjFejQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918055251</pqid></control><display><type>article</type><title>Reparameterization of piecewise rational Bezier curves and its applications</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Tokuyama, Yoshimasa ; Konno, Kouichi</creator><creatorcontrib>Tokuyama, Yoshimasa ; Konno, Kouichi</creatorcontrib><description>degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s003710100110330</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>B spline functions ; Basis functions ; Continuity (mathematics) ; Curves ; Knots ; Segments</subject><ispartof>The Visual computer, 2001-08, Vol.17 (6), p.329-336</ispartof><rights>Springer-Verlag 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-3fc0265261fd5ec0f08f135ef2dbc5fac521129ca03f499067bc25b05e330c0e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918055251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,43784,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Tokuyama, Yoshimasa</creatorcontrib><creatorcontrib>Konno, Kouichi</creatorcontrib><title>Reparameterization of piecewise rational Bezier curves and its applications</title><title>The Visual computer</title><description>degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown.</description><subject>B spline functions</subject><subject>Basis functions</subject><subject>Continuity (mathematics)</subject><subject>Curves</subject><subject>Knots</subject><subject>Segments</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkEFLxDAQhYMouK7ePQY8V2eSpmmOuugqLgii55KmE8jS3dakVdxfb9315Ok9ho_Hm8fYJcI1AuibBCA1wuQRQUo4YjPMpciERHXMZoC6zIQuzSk7S2k9UVrnZsaeX6m30W5ooBh2dgjdlnee94EcfYVEPO5vtuV3tAsUuRvjJyVutw0Pw6R93wa3Z9I5O_G2TXTxp3P2_nD_tnjMVi_Lp8XtKnOiMEMmvQNRKFGgbxQ58FB6lIq8aGqnvHVKIArjLEifGwOFrp1QNSia3nJAcs6uDrl97D5GSkO17sY4dUyVMFiCUkLhRMGBcrFLKZKv-hg2Nn5XCNXvZNX_yeQPBjFejQ</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Tokuyama, Yoshimasa</creator><creator>Konno, Kouichi</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20010801</creationdate><title>Reparameterization of piecewise rational Bezier curves and its applications</title><author>Tokuyama, Yoshimasa ; Konno, Kouichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-3fc0265261fd5ec0f08f135ef2dbc5fac521129ca03f499067bc25b05e330c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>B spline functions</topic><topic>Basis functions</topic><topic>Continuity (mathematics)</topic><topic>Curves</topic><topic>Knots</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokuyama, Yoshimasa</creatorcontrib><creatorcontrib>Konno, Kouichi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokuyama, Yoshimasa</au><au>Konno, Kouichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reparameterization of piecewise rational Bezier curves and its applications</atitle><jtitle>The Visual computer</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>17</volume><issue>6</issue><spage>329</spage><epage>336</epage><pages>329-336</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>degree. Although the curve segments are C1 continuous in three dimensions, they may be C0 continuous in four dimensions. In this case, the multiplicity of each interior knot cannot be reduced and the B-spline basis function becomes C0 continuous. Using a surface generation method, such as skinning these kinds of rational B-spline curves to construct an interpolatory surface, may generate surfaces with C0 continuity. This paper presents a reparameterization method for reducing the multiplicity of each interior knot to make the curve segments C1 continuous in four dimensions. The reparameterized rational B-spline curve has the same shape and degree as before and also has a standard form. Some applications in skinned surface and ruled surface generation based on the reparameterized curves are shown.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s003710100110330</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2001-08, Vol.17 (6), p.329-336 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918055251 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | B spline functions Basis functions Continuity (mathematics) Curves Knots Segments |
title | Reparameterization of piecewise rational Bezier curves and its applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reparameterization%20of%20piecewise%20rational%20Bezier%20curves%20and%20its%20applications&rft.jtitle=The%20Visual%20computer&rft.au=Tokuyama,%20Yoshimasa&rft.date=2001-08-01&rft.volume=17&rft.issue=6&rft.spage=329&rft.epage=336&rft.pages=329-336&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s003710100110330&rft_dat=%3Cproquest_cross%3E2918055251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918055251&rft_id=info:pmid/&rfr_iscdi=true |