Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows
This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the t...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2016-06, Vol.20 (6), p.2309-2327 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2327 |
---|---|
container_issue | 6 |
container_start_page | 2309 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 20 |
creator | Nalepa, Jakub Blocho, Miroslaw |
description | This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results. |
doi_str_mv | 10.1007/s00500-015-1642-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918052670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918052670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFp9AHckrlFgYJhZNo1_iYkbXRPKXFqaMlOBttGnlzomrlxxEs537r0HoWtGbxml6i5RKikllEnCasGJOEETJqqKKKHa0x_NiapFdY4uUlpTypmS1QTZWWe22e8BBwiQvcVmsxyiz6uA3RBx8L0P_sv3S9z5lE1vAfse5xXgPay83QCOwy4f_7dxWGwg4EOBcfYBiuq74ZAu0ZkzmwRXv-8UvT_cv82fyMvr4_N89kJsJdtMHG8boRiDrjFCiKaxjjpLTWec5QvluGlkw7lSRddWyHJrC862zCm5sMxWU3Qz5pZNPnaQsl4Pu9iXkZq3rKGS14oWFxtdNg4pRXB6G30w8VMzqo9d6rFLXfL1sUstCsNHJhVvv4T4l_w_9A0av3hd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918052670</pqid></control><display><type>article</type><title>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</title><source>SpringerLink (Online service)</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Nalepa, Jakub ; Blocho, Miroslaw</creator><creatorcontrib>Nalepa, Jakub ; Blocho, Miroslaw</creatorcontrib><description>This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-015-1642-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Adaptive algorithms ; Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control ; Customer services ; Energy consumption ; Engineering ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Parameters ; Robotics ; Sensitivity analysis ; Solution space ; Travel ; Traveling salesman problem ; Vehicle routing ; Vehicles ; Windows (intervals)</subject><ispartof>Soft computing (Berlin, Germany), 2016-06, Vol.20 (6), p.2309-2327</ispartof><rights>The Author(s) 2015</rights><rights>The Author(s) 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</citedby><cites>FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-015-1642-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918052670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Nalepa, Jakub</creatorcontrib><creatorcontrib>Blocho, Miroslaw</creatorcontrib><title>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results.</description><subject>Adaptation</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Customer services</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Robotics</subject><subject>Sensitivity analysis</subject><subject>Solution space</subject><subject>Travel</subject><subject>Traveling salesman problem</subject><subject>Vehicle routing</subject><subject>Vehicles</subject><subject>Windows (intervals)</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OAyEUhYnRxFp9AHckrlFgYJhZNo1_iYkbXRPKXFqaMlOBttGnlzomrlxxEs537r0HoWtGbxml6i5RKikllEnCasGJOEETJqqKKKHa0x_NiapFdY4uUlpTypmS1QTZWWe22e8BBwiQvcVmsxyiz6uA3RBx8L0P_sv3S9z5lE1vAfse5xXgPay83QCOwy4f_7dxWGwg4EOBcfYBiuq74ZAu0ZkzmwRXv-8UvT_cv82fyMvr4_N89kJsJdtMHG8boRiDrjFCiKaxjjpLTWec5QvluGlkw7lSRddWyHJrC862zCm5sMxWU3Qz5pZNPnaQsl4Pu9iXkZq3rKGS14oWFxtdNg4pRXB6G30w8VMzqo9d6rFLXfL1sUstCsNHJhVvv4T4l_w_9A0av3hd</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Nalepa, Jakub</creator><creator>Blocho, Miroslaw</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160601</creationdate><title>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</title><author>Nalepa, Jakub ; Blocho, Miroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Customer services</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Robotics</topic><topic>Sensitivity analysis</topic><topic>Solution space</topic><topic>Travel</topic><topic>Traveling salesman problem</topic><topic>Vehicle routing</topic><topic>Vehicles</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nalepa, Jakub</creatorcontrib><creatorcontrib>Blocho, Miroslaw</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nalepa, Jakub</au><au>Blocho, Miroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>20</volume><issue>6</issue><spage>2309</spage><epage>2327</epage><pages>2309-2327</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-015-1642-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2016-06, Vol.20 (6), p.2309-2327 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918052670 |
source | SpringerLink (Online service); ProQuest Central UK/Ireland; ProQuest Central |
subjects | Adaptation Adaptive algorithms Algorithms Artificial Intelligence Computational Intelligence Control Customer services Energy consumption Engineering Mathematical Logic and Foundations Mechatronics Methodologies and Application Optimization Parameters Robotics Sensitivity analysis Solution space Travel Traveling salesman problem Vehicle routing Vehicles Windows (intervals) |
title | Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20memetic%20algorithm%20for%20minimizing%20distance%20in%20the%20vehicle%20routing%20problem%20with%20time%20windows&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Nalepa,%20Jakub&rft.date=2016-06-01&rft.volume=20&rft.issue=6&rft.spage=2309&rft.epage=2327&rft.pages=2309-2327&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-015-1642-4&rft_dat=%3Cproquest_cross%3E2918052670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918052670&rft_id=info:pmid/&rfr_iscdi=true |