Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows

This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2016-06, Vol.20 (6), p.2309-2327
Hauptverfasser: Nalepa, Jakub, Blocho, Miroslaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2327
container_issue 6
container_start_page 2309
container_title Soft computing (Berlin, Germany)
container_volume 20
creator Nalepa, Jakub
Blocho, Miroslaw
description This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results.
doi_str_mv 10.1007/s00500-015-1642-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918052670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918052670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFp9AHckrlFgYJhZNo1_iYkbXRPKXFqaMlOBttGnlzomrlxxEs537r0HoWtGbxml6i5RKikllEnCasGJOEETJqqKKKHa0x_NiapFdY4uUlpTypmS1QTZWWe22e8BBwiQvcVmsxyiz6uA3RBx8L0P_sv3S9z5lE1vAfse5xXgPay83QCOwy4f_7dxWGwg4EOBcfYBiuq74ZAu0ZkzmwRXv-8UvT_cv82fyMvr4_N89kJsJdtMHG8boRiDrjFCiKaxjjpLTWec5QvluGlkw7lSRddWyHJrC862zCm5sMxWU3Qz5pZNPnaQsl4Pu9iXkZq3rKGS14oWFxtdNg4pRXB6G30w8VMzqo9d6rFLXfL1sUstCsNHJhVvv4T4l_w_9A0av3hd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918052670</pqid></control><display><type>article</type><title>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</title><source>SpringerLink (Online service)</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Nalepa, Jakub ; Blocho, Miroslaw</creator><creatorcontrib>Nalepa, Jakub ; Blocho, Miroslaw</creatorcontrib><description>This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-015-1642-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Adaptive algorithms ; Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control ; Customer services ; Energy consumption ; Engineering ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Parameters ; Robotics ; Sensitivity analysis ; Solution space ; Travel ; Traveling salesman problem ; Vehicle routing ; Vehicles ; Windows (intervals)</subject><ispartof>Soft computing (Berlin, Germany), 2016-06, Vol.20 (6), p.2309-2327</ispartof><rights>The Author(s) 2015</rights><rights>The Author(s) 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</citedby><cites>FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-015-1642-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918052670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Nalepa, Jakub</creatorcontrib><creatorcontrib>Blocho, Miroslaw</creatorcontrib><title>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results.</description><subject>Adaptation</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Customer services</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Robotics</subject><subject>Sensitivity analysis</subject><subject>Solution space</subject><subject>Travel</subject><subject>Traveling salesman problem</subject><subject>Vehicle routing</subject><subject>Vehicles</subject><subject>Windows (intervals)</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OAyEUhYnRxFp9AHckrlFgYJhZNo1_iYkbXRPKXFqaMlOBttGnlzomrlxxEs537r0HoWtGbxml6i5RKikllEnCasGJOEETJqqKKKHa0x_NiapFdY4uUlpTypmS1QTZWWe22e8BBwiQvcVmsxyiz6uA3RBx8L0P_sv3S9z5lE1vAfse5xXgPay83QCOwy4f_7dxWGwg4EOBcfYBiuq74ZAu0ZkzmwRXv-8UvT_cv82fyMvr4_N89kJsJdtMHG8boRiDrjFCiKaxjjpLTWec5QvluGlkw7lSRddWyHJrC862zCm5sMxWU3Qz5pZNPnaQsl4Pu9iXkZq3rKGS14oWFxtdNg4pRXB6G30w8VMzqo9d6rFLXfL1sUstCsNHJhVvv4T4l_w_9A0av3hd</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Nalepa, Jakub</creator><creator>Blocho, Miroslaw</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160601</creationdate><title>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</title><author>Nalepa, Jakub ; Blocho, Miroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f2984711ed8a44488cf0fc0adafc2b7f2a8582277b7f6c450159efc91f75bc1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Customer services</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Robotics</topic><topic>Sensitivity analysis</topic><topic>Solution space</topic><topic>Travel</topic><topic>Traveling salesman problem</topic><topic>Vehicle routing</topic><topic>Vehicles</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nalepa, Jakub</creatorcontrib><creatorcontrib>Blocho, Miroslaw</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nalepa, Jakub</au><au>Blocho, Miroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>20</volume><issue>6</issue><spage>2309</spage><epage>2327</epage><pages>2309-2327</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper presents an adaptive memetic algorithm to solve the vehicle routing problem with time windows (VRPTW). It is a well-known NP-hard discrete optimization problem with two objectives—to minimize the number of vehicles serving a set of geographically dispersed customers, and to minimize the total distance traveled in the routing plan. Although memetic algorithms have been proven to be extremely efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the adaptive memetic algorithm (AMA-VRPTW) for minimizing the total travel distance. In AMA-VRPTW, a population of solutions evolves with time. The parameters of the algorithm, including the selection scheme, population size and the number of child solutions generated for each pair of parents, are adjusted dynamically during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the solution space. Extensive experimental study performed on the well-known Solomon’s and Gehring and Homberger’s benchmark sets confirms the efficacy and convergence capabilities of the proposed AMA-VRPTW. We show that it is very competitive compared with other state-of-the-art techniques. Finally, the influence of the proposed adaptive schemes on the AMA-VRPTW behavior and performance is investigated in a thorough sensitivity analysis. This analysis is complemented with the two-tailed Wilcoxon test for verifying the statistical significance of the results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-015-1642-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2016-06, Vol.20 (6), p.2309-2327
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918052670
source SpringerLink (Online service); ProQuest Central UK/Ireland; ProQuest Central
subjects Adaptation
Adaptive algorithms
Algorithms
Artificial Intelligence
Computational Intelligence
Control
Customer services
Energy consumption
Engineering
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Optimization
Parameters
Robotics
Sensitivity analysis
Solution space
Travel
Traveling salesman problem
Vehicle routing
Vehicles
Windows (intervals)
title Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20memetic%20algorithm%20for%20minimizing%20distance%20in%20the%20vehicle%20routing%20problem%20with%20time%20windows&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Nalepa,%20Jakub&rft.date=2016-06-01&rft.volume=20&rft.issue=6&rft.spage=2309&rft.epage=2327&rft.pages=2309-2327&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-015-1642-4&rft_dat=%3Cproquest_cross%3E2918052670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918052670&rft_id=info:pmid/&rfr_iscdi=true