Unsupervised deep learning based ego motion estimation with a downward facing camera
Knowing the robot's pose is a crucial prerequisite for mobile robot tasks such as collision avoidance or autonomous navigation. Using powerful predictive models to estimate transformations for visual odometry via downward facing cameras is an understudied area of research. This work proposes a...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2023-03, Vol.39 (3), p.785-798 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 798 |
---|---|
container_issue | 3 |
container_start_page | 785 |
container_title | The Visual computer |
container_volume | 39 |
creator | Gilles, Maximilian Ibrahimpasic, Sascha |
description | Knowing the robot's pose is a crucial prerequisite for mobile robot tasks such as collision avoidance or autonomous navigation. Using powerful predictive models to estimate transformations for visual odometry via downward facing cameras is an understudied area of research. This work proposes a novel approach based on deep learning for estimating ego motion with a downward looking camera. The network can be trained completely unsupervised and is not restricted to a specific motion model. We propose two neural network architectures based on the Early Fusion and Slow Fusion design principle: “EarlyBird” and “SlowBird”. Both networks share a Spatial Transformer layer for image warping and are trained with a modified structural similarity index (SSIM) loss function. Experiments carried out in simulation and for a real world differential drive robot show similar and partially better results of our proposed deep learning based approaches compared to a state-of-the-art method based on fast Fourier transformation. |
doi_str_mv | 10.1007/s00371-021-02345-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918052531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918052531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bf69f5586adf48602789bc79182ea0582fd97b8e785f83edc3fcd877460ff6203</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBH_MgRVbykSlzas-X4UVK1TrBTKv4ep0HixmG169XM7HgAuCX4nmAsHzLGTBKE6Vis4kicgRmpGEWUEX4OZphIhahU9SW4ynmLy1tW9Qys1jEfep--2uwddN73cOdNim3cwMaMO7_p4L4b2i5Cn4d2b07jsR0-oIGuO8ajSQ4GY0eKNXufzDW4CGaX_c1vn4P189Nq8YqW7y9vi8clskywATVB1IFzJYwLlRJ4tNdYWRNFvcFc0eBq2SgvFQ-KeWdZsE4V3wKHIChmc3A36fap-zwUd3rbHVIsJzUtKphTzkhB0QllU5dz8kH3qXwjfWuC9ZientLTJT19Sk-LQmITKRdw3Pj0J_0P6weHq3Ka</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918052531</pqid></control><display><type>article</type><title>Unsupervised deep learning based ego motion estimation with a downward facing camera</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Gilles, Maximilian ; Ibrahimpasic, Sascha</creator><creatorcontrib>Gilles, Maximilian ; Ibrahimpasic, Sascha</creatorcontrib><description>Knowing the robot's pose is a crucial prerequisite for mobile robot tasks such as collision avoidance or autonomous navigation. Using powerful predictive models to estimate transformations for visual odometry via downward facing cameras is an understudied area of research. This work proposes a novel approach based on deep learning for estimating ego motion with a downward looking camera. The network can be trained completely unsupervised and is not restricted to a specific motion model. We propose two neural network architectures based on the Early Fusion and Slow Fusion design principle: “EarlyBird” and “SlowBird”. Both networks share a Spatial Transformer layer for image warping and are trained with a modified structural similarity index (SSIM) loss function. Experiments carried out in simulation and for a real world differential drive robot show similar and partially better results of our proposed deep learning based approaches compared to a state-of-the-art method based on fast Fourier transformation.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-021-02345-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Autonomous navigation ; Cameras ; Collision avoidance ; Computer Graphics ; Computer Science ; Deep learning ; Estimation ; Fast Fourier transformations ; Fourier transforms ; Image Processing and Computer Vision ; Image warping ; Localization ; Motion simulation ; Neural networks ; Original Article ; Prediction models ; Registration ; Robot dynamics ; Robots ; Vehicles</subject><ispartof>The Visual computer, 2023-03, Vol.39 (3), p.785-798</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bf69f5586adf48602789bc79182ea0582fd97b8e785f83edc3fcd877460ff6203</citedby><cites>FETCH-LOGICAL-c363t-bf69f5586adf48602789bc79182ea0582fd97b8e785f83edc3fcd877460ff6203</cites><orcidid>0000-0002-0528-5709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-021-02345-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918052531?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Gilles, Maximilian</creatorcontrib><creatorcontrib>Ibrahimpasic, Sascha</creatorcontrib><title>Unsupervised deep learning based ego motion estimation with a downward facing camera</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Knowing the robot's pose is a crucial prerequisite for mobile robot tasks such as collision avoidance or autonomous navigation. Using powerful predictive models to estimate transformations for visual odometry via downward facing cameras is an understudied area of research. This work proposes a novel approach based on deep learning for estimating ego motion with a downward looking camera. The network can be trained completely unsupervised and is not restricted to a specific motion model. We propose two neural network architectures based on the Early Fusion and Slow Fusion design principle: “EarlyBird” and “SlowBird”. Both networks share a Spatial Transformer layer for image warping and are trained with a modified structural similarity index (SSIM) loss function. Experiments carried out in simulation and for a real world differential drive robot show similar and partially better results of our proposed deep learning based approaches compared to a state-of-the-art method based on fast Fourier transformation.</description><subject>Artificial Intelligence</subject><subject>Autonomous navigation</subject><subject>Cameras</subject><subject>Collision avoidance</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Estimation</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Image Processing and Computer Vision</subject><subject>Image warping</subject><subject>Localization</subject><subject>Motion simulation</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Registration</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Vehicles</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBH_MgRVbykSlzas-X4UVK1TrBTKv4ep0HixmG169XM7HgAuCX4nmAsHzLGTBKE6Vis4kicgRmpGEWUEX4OZphIhahU9SW4ynmLy1tW9Qys1jEfep--2uwddN73cOdNim3cwMaMO7_p4L4b2i5Cn4d2b07jsR0-oIGuO8ajSQ4GY0eKNXufzDW4CGaX_c1vn4P189Nq8YqW7y9vi8clskywATVB1IFzJYwLlRJ4tNdYWRNFvcFc0eBq2SgvFQ-KeWdZsE4V3wKHIChmc3A36fap-zwUd3rbHVIsJzUtKphTzkhB0QllU5dz8kH3qXwjfWuC9ZientLTJT19Sk-LQmITKRdw3Pj0J_0P6weHq3Ka</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Gilles, Maximilian</creator><creator>Ibrahimpasic, Sascha</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0528-5709</orcidid></search><sort><creationdate>20230301</creationdate><title>Unsupervised deep learning based ego motion estimation with a downward facing camera</title><author>Gilles, Maximilian ; Ibrahimpasic, Sascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bf69f5586adf48602789bc79182ea0582fd97b8e785f83edc3fcd877460ff6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Autonomous navigation</topic><topic>Cameras</topic><topic>Collision avoidance</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Estimation</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Image Processing and Computer Vision</topic><topic>Image warping</topic><topic>Localization</topic><topic>Motion simulation</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Registration</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilles, Maximilian</creatorcontrib><creatorcontrib>Ibrahimpasic, Sascha</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilles, Maximilian</au><au>Ibrahimpasic, Sascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised deep learning based ego motion estimation with a downward facing camera</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>785</spage><epage>798</epage><pages>785-798</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Knowing the robot's pose is a crucial prerequisite for mobile robot tasks such as collision avoidance or autonomous navigation. Using powerful predictive models to estimate transformations for visual odometry via downward facing cameras is an understudied area of research. This work proposes a novel approach based on deep learning for estimating ego motion with a downward looking camera. The network can be trained completely unsupervised and is not restricted to a specific motion model. We propose two neural network architectures based on the Early Fusion and Slow Fusion design principle: “EarlyBird” and “SlowBird”. Both networks share a Spatial Transformer layer for image warping and are trained with a modified structural similarity index (SSIM) loss function. Experiments carried out in simulation and for a real world differential drive robot show similar and partially better results of our proposed deep learning based approaches compared to a state-of-the-art method based on fast Fourier transformation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-021-02345-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0528-5709</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2023-03, Vol.39 (3), p.785-798 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918052531 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Autonomous navigation Cameras Collision avoidance Computer Graphics Computer Science Deep learning Estimation Fast Fourier transformations Fourier transforms Image Processing and Computer Vision Image warping Localization Motion simulation Neural networks Original Article Prediction models Registration Robot dynamics Robots Vehicles |
title | Unsupervised deep learning based ego motion estimation with a downward facing camera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20deep%20learning%20based%20ego%20motion%20estimation%20with%20a%20downward%20facing%20camera&rft.jtitle=The%20Visual%20computer&rft.au=Gilles,%20Maximilian&rft.date=2023-03-01&rft.volume=39&rft.issue=3&rft.spage=785&rft.epage=798&rft.pages=785-798&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-021-02345-6&rft_dat=%3Cproquest_cross%3E2918052531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918052531&rft_id=info:pmid/&rfr_iscdi=true |