Motion normalization method based on an inverted pendulum model for clustering

In many creative industries, such as the animation, movie, and game industries, artists often make good use of motion data to create their works by retrieving a particular motion from motion-capture data and reusing it. A large database of human motion is difficult to use unless the motion data are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2018, Vol.34 (1), p.29-40
Hauptverfasser: Lee, Taekhee, Kang, Daeun, Kwon, Taesoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 29
container_title The Visual computer
container_volume 34
creator Lee, Taekhee
Kang, Daeun
Kwon, Taesoo
description In many creative industries, such as the animation, movie, and game industries, artists often make good use of motion data to create their works by retrieving a particular motion from motion-capture data and reusing it. A large database of human motion is difficult to use unless the motion data are organized according to the type of motion. Although there have been many results for clustering motion capture data, many variations in the motion data complicate the clustering of data by making one type of motion numerically similar to other types of motions. To improve the motion clustering performance, we present a novel physically based motion normalization method that reduces ambiguous elements of motions, so that motions that have different semantics can be differentiated. The normalized motion data generated by our method can be used as input to existing clustering algorithms and improves the results.
doi_str_mv 10.1007/s00371-016-1308-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918050689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918050689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-23b56b2db63249b25a1c735701aa37a12ef05c6d31654cae26b323eaa83ea17f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19F7k6ZplzL4glE3ug5pm2qHNqlJK4y_3tQKrtzcy4Fz7uMj5BzhEgHkVQDgEilgRpFDTvcHZIUpZ5RxFIdkBShzymReHJOTEHYQtUyLFXl6dGPrbGKd73XXfukf1Zvx3dVJqYOpk6i1TVr7afwY5WBsPXVTn_SuNl3SOJ9U3RRG41v7dkqOGt0Fc_bb1-T19uZlc0-3z3cPm-strTjIMR5ViqxkdZlxlhYlExoryYUE1JpLjcw0IKqs5piJtNKGZSVn3Gidx4Ky4WtyscwdvPuYTBjVzk3expWKFZiDgCwvogsXV-VdCN40avBtr_1eIagZm1qwqYhNzdjUPmbYkgnD_JDxf5P_D30DtytwtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918050689</pqid></control><display><type>article</type><title>Motion normalization method based on an inverted pendulum model for clustering</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Lee, Taekhee ; Kang, Daeun ; Kwon, Taesoo</creator><creatorcontrib>Lee, Taekhee ; Kang, Daeun ; Kwon, Taesoo</creatorcontrib><description>In many creative industries, such as the animation, movie, and game industries, artists often make good use of motion data to create their works by retrieving a particular motion from motion-capture data and reusing it. A large database of human motion is difficult to use unless the motion data are organized according to the type of motion. Although there have been many results for clustering motion capture data, many variations in the motion data complicate the clustering of data by making one type of motion numerically similar to other types of motions. To improve the motion clustering performance, we present a novel physically based motion normalization method that reduces ambiguous elements of motions, so that motions that have different semantics can be differentiated. The normalized motion data generated by our method can be used as input to existing clustering algorithms and improves the results.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-016-1308-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animation ; Artificial Intelligence ; Artists ; Classification ; Clustering ; Computer Graphics ; Computer Science ; Datasets ; Editing ; Human motion ; Image Processing and Computer Vision ; Methods ; Motion capture ; Original Article ; Semantics ; User needs</subject><ispartof>The Visual computer, 2018, Vol.34 (1), p.29-40</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-23b56b2db63249b25a1c735701aa37a12ef05c6d31654cae26b323eaa83ea17f3</cites><orcidid>0000-0002-9253-2156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-016-1308-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918050689?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Lee, Taekhee</creatorcontrib><creatorcontrib>Kang, Daeun</creatorcontrib><creatorcontrib>Kwon, Taesoo</creatorcontrib><title>Motion normalization method based on an inverted pendulum model for clustering</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>In many creative industries, such as the animation, movie, and game industries, artists often make good use of motion data to create their works by retrieving a particular motion from motion-capture data and reusing it. A large database of human motion is difficult to use unless the motion data are organized according to the type of motion. Although there have been many results for clustering motion capture data, many variations in the motion data complicate the clustering of data by making one type of motion numerically similar to other types of motions. To improve the motion clustering performance, we present a novel physically based motion normalization method that reduces ambiguous elements of motions, so that motions that have different semantics can be differentiated. The normalized motion data generated by our method can be used as input to existing clustering algorithms and improves the results.</description><subject>Algorithms</subject><subject>Animation</subject><subject>Artificial Intelligence</subject><subject>Artists</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Editing</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Motion capture</subject><subject>Original Article</subject><subject>Semantics</subject><subject>User needs</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19F7k6ZplzL4glE3ug5pm2qHNqlJK4y_3tQKrtzcy4Fz7uMj5BzhEgHkVQDgEilgRpFDTvcHZIUpZ5RxFIdkBShzymReHJOTEHYQtUyLFXl6dGPrbGKd73XXfukf1Zvx3dVJqYOpk6i1TVr7afwY5WBsPXVTn_SuNl3SOJ9U3RRG41v7dkqOGt0Fc_bb1-T19uZlc0-3z3cPm-strTjIMR5ViqxkdZlxlhYlExoryYUE1JpLjcw0IKqs5piJtNKGZSVn3Gidx4Ky4WtyscwdvPuYTBjVzk3expWKFZiDgCwvogsXV-VdCN40avBtr_1eIagZm1qwqYhNzdjUPmbYkgnD_JDxf5P_D30DtytwtQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Lee, Taekhee</creator><creator>Kang, Daeun</creator><creator>Kwon, Taesoo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9253-2156</orcidid></search><sort><creationdate>2018</creationdate><title>Motion normalization method based on an inverted pendulum model for clustering</title><author>Lee, Taekhee ; Kang, Daeun ; Kwon, Taesoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-23b56b2db63249b25a1c735701aa37a12ef05c6d31654cae26b323eaa83ea17f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Animation</topic><topic>Artificial Intelligence</topic><topic>Artists</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Editing</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Motion capture</topic><topic>Original Article</topic><topic>Semantics</topic><topic>User needs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Taekhee</creatorcontrib><creatorcontrib>Kang, Daeun</creatorcontrib><creatorcontrib>Kwon, Taesoo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Taekhee</au><au>Kang, Daeun</au><au>Kwon, Taesoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion normalization method based on an inverted pendulum model for clustering</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>29</spage><epage>40</epage><pages>29-40</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>In many creative industries, such as the animation, movie, and game industries, artists often make good use of motion data to create their works by retrieving a particular motion from motion-capture data and reusing it. A large database of human motion is difficult to use unless the motion data are organized according to the type of motion. Although there have been many results for clustering motion capture data, many variations in the motion data complicate the clustering of data by making one type of motion numerically similar to other types of motions. To improve the motion clustering performance, we present a novel physically based motion normalization method that reduces ambiguous elements of motions, so that motions that have different semantics can be differentiated. The normalized motion data generated by our method can be used as input to existing clustering algorithms and improves the results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-016-1308-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9253-2156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2018, Vol.34 (1), p.29-40
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918050689
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Animation
Artificial Intelligence
Artists
Classification
Clustering
Computer Graphics
Computer Science
Datasets
Editing
Human motion
Image Processing and Computer Vision
Methods
Motion capture
Original Article
Semantics
User needs
title Motion normalization method based on an inverted pendulum model for clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20normalization%20method%20based%20on%20an%20inverted%20pendulum%20model%20for%20clustering&rft.jtitle=The%20Visual%20computer&rft.au=Lee,%20Taekhee&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=29&rft.epage=40&rft.pages=29-40&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-016-1308-y&rft_dat=%3Cproquest_cross%3E2918050689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918050689&rft_id=info:pmid/&rfr_iscdi=true