Multi-granulation hesitant fuzzy rough sets and corresponding applications

This paper develops a single-granulation hesitant fuzzy rough set (SGHFRS) model from the perspective of granular computing. In the multi-granulation framework, we propose two types of multi-granulation rough sets model called the optimistic multi-granulation hesitant fuzzy rough sets (OMGHFRSs) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2019-12, Vol.23 (24), p.13085-13103
Hauptverfasser: Zhang, Haidong, Zhan, Jianming, He, Yanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13103
container_issue 24
container_start_page 13085
container_title Soft computing (Berlin, Germany)
container_volume 23
creator Zhang, Haidong
Zhan, Jianming
He, Yanping
description This paper develops a single-granulation hesitant fuzzy rough set (SGHFRS) model from the perspective of granular computing. In the multi-granulation framework, we propose two types of multi-granulation rough sets model called the optimistic multi-granulation hesitant fuzzy rough sets (OMGHFRSs) and pessimistic multi-granulation hesitant fuzzy rough sets (PMGHFRSs). In the models, the multi-granulation hesitant fuzzy lower and upper approximations are defined based on multiple hesitant fuzzy tolerance relations. The relationships among the SGHFRSs, OMGHFRSs and PMGHFRSs are also established. In order to further measure the uncertainty of multi-granulation hesitant fuzzy rough sets (MGHFRSs), the concepts of rough measure and rough measure about the parameters α and β are presented and some of their interesting properties are examined. Finally, we give a decision-making method based on the MGHFRSs, and the validity of this approach is illustrated by two practical applications. Compared with the existing results, we also expound its advantages.
doi_str_mv 10.1007/s00500-019-03853-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918048634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918048634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3943e12224136077d78a4466e734c4fe487c9f62a1c3937ee579b23263b8f8233</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMRue_Rw7HlHFp4pYYLbc1ElTBTvYydD-etIGiY3p3eGe-6RDyDWDWwag7hJADkCBaQpY5EjxhMyYQKRKKH16zJwqKfCcXKS0BeBM5Tgjr29D2ze0jtYPre2b4LONS01vfZ9Vw36_y2IY6k2WXJ8y69dZGWJ0qQt-3fg6s13XNuWRS5fkrLJtcle_d04-Hx8-Fs90-f70srhf0hKl6ilqgY5xzgVDCUqtVWGFkNIpFKWonChUqSvJLStRo3IuV3rFkUtcFVXBEefkZtrtYvgeXOrNNgzRjy8N16wAUUgUY4tPrTKGlKKrTBebLxt3hoE5ODOTMzM6M0dn5jCNE5TGsq9d_Jv-h_oBN91ucw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918048634</pqid></control><display><type>article</type><title>Multi-granulation hesitant fuzzy rough sets and corresponding applications</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhang, Haidong ; Zhan, Jianming ; He, Yanping</creator><creatorcontrib>Zhang, Haidong ; Zhan, Jianming ; He, Yanping</creatorcontrib><description>This paper develops a single-granulation hesitant fuzzy rough set (SGHFRS) model from the perspective of granular computing. In the multi-granulation framework, we propose two types of multi-granulation rough sets model called the optimistic multi-granulation hesitant fuzzy rough sets (OMGHFRSs) and pessimistic multi-granulation hesitant fuzzy rough sets (PMGHFRSs). In the models, the multi-granulation hesitant fuzzy lower and upper approximations are defined based on multiple hesitant fuzzy tolerance relations. The relationships among the SGHFRSs, OMGHFRSs and PMGHFRSs are also established. In order to further measure the uncertainty of multi-granulation hesitant fuzzy rough sets (MGHFRSs), the concepts of rough measure and rough measure about the parameters α and β are presented and some of their interesting properties are examined. Finally, we give a decision-making method based on the MGHFRSs, and the validity of this approach is illustrated by two practical applications. Compared with the existing results, we also expound its advantages.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-03853-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Artificial Intelligence ; Computational Intelligence ; Control ; Decision making ; Engineering ; Fuzzy sets ; Granulation ; Information systems ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Morality ; Robotics ; Set theory ; Students</subject><ispartof>Soft computing (Berlin, Germany), 2019-12, Vol.23 (24), p.13085-13103</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3943e12224136077d78a4466e734c4fe487c9f62a1c3937ee579b23263b8f8233</citedby><cites>FETCH-LOGICAL-c367t-3943e12224136077d78a4466e734c4fe487c9f62a1c3937ee579b23263b8f8233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-019-03853-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918048634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Haidong</creatorcontrib><creatorcontrib>Zhan, Jianming</creatorcontrib><creatorcontrib>He, Yanping</creatorcontrib><title>Multi-granulation hesitant fuzzy rough sets and corresponding applications</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper develops a single-granulation hesitant fuzzy rough set (SGHFRS) model from the perspective of granular computing. In the multi-granulation framework, we propose two types of multi-granulation rough sets model called the optimistic multi-granulation hesitant fuzzy rough sets (OMGHFRSs) and pessimistic multi-granulation hesitant fuzzy rough sets (PMGHFRSs). In the models, the multi-granulation hesitant fuzzy lower and upper approximations are defined based on multiple hesitant fuzzy tolerance relations. The relationships among the SGHFRSs, OMGHFRSs and PMGHFRSs are also established. In order to further measure the uncertainty of multi-granulation hesitant fuzzy rough sets (MGHFRSs), the concepts of rough measure and rough measure about the parameters α and β are presented and some of their interesting properties are examined. Finally, we give a decision-making method based on the MGHFRSs, and the validity of this approach is illustrated by two practical applications. Compared with the existing results, we also expound its advantages.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Fuzzy sets</subject><subject>Granulation</subject><subject>Information systems</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Morality</subject><subject>Robotics</subject><subject>Set theory</subject><subject>Students</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5giMRue_Rw7HlHFp4pYYLbc1ElTBTvYydD-etIGiY3p3eGe-6RDyDWDWwag7hJADkCBaQpY5EjxhMyYQKRKKH16zJwqKfCcXKS0BeBM5Tgjr29D2ze0jtYPre2b4LONS01vfZ9Vw36_y2IY6k2WXJ8y69dZGWJ0qQt-3fg6s13XNuWRS5fkrLJtcle_d04-Hx8-Fs90-f70srhf0hKl6ilqgY5xzgVDCUqtVWGFkNIpFKWonChUqSvJLStRo3IuV3rFkUtcFVXBEefkZtrtYvgeXOrNNgzRjy8N16wAUUgUY4tPrTKGlKKrTBebLxt3hoE5ODOTMzM6M0dn5jCNE5TGsq9d_Jv-h_oBN91ucw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zhang, Haidong</creator><creator>Zhan, Jianming</creator><creator>He, Yanping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191201</creationdate><title>Multi-granulation hesitant fuzzy rough sets and corresponding applications</title><author>Zhang, Haidong ; Zhan, Jianming ; He, Yanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3943e12224136077d78a4466e734c4fe487c9f62a1c3937ee579b23263b8f8233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Fuzzy sets</topic><topic>Granulation</topic><topic>Information systems</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Morality</topic><topic>Robotics</topic><topic>Set theory</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haidong</creatorcontrib><creatorcontrib>Zhan, Jianming</creatorcontrib><creatorcontrib>He, Yanping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haidong</au><au>Zhan, Jianming</au><au>He, Yanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-granulation hesitant fuzzy rough sets and corresponding applications</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>23</volume><issue>24</issue><spage>13085</spage><epage>13103</epage><pages>13085-13103</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper develops a single-granulation hesitant fuzzy rough set (SGHFRS) model from the perspective of granular computing. In the multi-granulation framework, we propose two types of multi-granulation rough sets model called the optimistic multi-granulation hesitant fuzzy rough sets (OMGHFRSs) and pessimistic multi-granulation hesitant fuzzy rough sets (PMGHFRSs). In the models, the multi-granulation hesitant fuzzy lower and upper approximations are defined based on multiple hesitant fuzzy tolerance relations. The relationships among the SGHFRSs, OMGHFRSs and PMGHFRSs are also established. In order to further measure the uncertainty of multi-granulation hesitant fuzzy rough sets (MGHFRSs), the concepts of rough measure and rough measure about the parameters α and β are presented and some of their interesting properties are examined. Finally, we give a decision-making method based on the MGHFRSs, and the validity of this approach is illustrated by two practical applications. Compared with the existing results, we also expound its advantages.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-03853-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2019-12, Vol.23 (24), p.13085-13103
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918048634
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Approximation
Artificial Intelligence
Computational Intelligence
Control
Decision making
Engineering
Fuzzy sets
Granulation
Information systems
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Morality
Robotics
Set theory
Students
title Multi-granulation hesitant fuzzy rough sets and corresponding applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-granulation%20hesitant%20fuzzy%20rough%20sets%20and%20corresponding%20applications&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Zhang,%20Haidong&rft.date=2019-12-01&rft.volume=23&rft.issue=24&rft.spage=13085&rft.epage=13103&rft.pages=13085-13103&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-03853-3&rft_dat=%3Cproquest_cross%3E2918048634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918048634&rft_id=info:pmid/&rfr_iscdi=true