Controlling fast spring-legged locomotion with artificial neural networks

Controlling the model of an one-legged robot is investigated. The model consists merely of a mass less spring attached to a point mass. The motion of this system is characterised by repeated changes between ground contact and flight phases. It can be kept in motion by active control only. Robots tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2000-09, Vol.4 (3), p.157-164
Hauptverfasser: Maier, K. D., Glauche, V., Beckstein, C., Blickhan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 3
container_start_page 157
container_title Soft computing (Berlin, Germany)
container_volume 4
creator Maier, K. D.
Glauche, V.
Beckstein, C.
Blickhan, R.
description Controlling the model of an one-legged robot is investigated. The model consists merely of a mass less spring attached to a point mass. The motion of this system is characterised by repeated changes between ground contact and flight phases. It can be kept in motion by active control only. Robots that are suited for fast legged locomotion require different hardware layouts and control approaches in contrast to slow moving ones. The spring mass system is a simple model that describes this principle movement of a spring-legged robot. Multi-Layer-Perceptrons (MLPs), Radial Basis Functions (RBFs) and Self-Organising Motoric Maps (SOMMs) were used to implement neurocontrollers for such a movement system. They all prove to be suitable for control of the movement. This is also shown by an experiment where the environment of the spring-mass system is changed from even to uneven ground. The neurocontroller is performing well with this additional complexity without being trained for it.
doi_str_mv 10.1007/s005000000041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918047927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918047927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1107-4b46be0bddfd79df33abc9e294bb3ed604eea3851a0954a63a7ed634acaacb073</originalsourceid><addsrcrecordid>eNpVUD1PwzAUtBBIlMLIHonZ8Bw7cT2iiI9KlVhgjp4dO6SkcbEdVfx70oaFt9zpdLqnO0JuGdwzAPkQAQqYT7AzsmCCcyqFVOcnnlNZCn5JrmLcAuRMFnxB1pUfUvB93w1t5jCmLO7DxGlv29Y2We-N3_nU-SE7dOkzw5A615kO-2ywYzhBOvjwFa_JhcM-2ps_XJKP56f36pVu3l7W1eOGGsZAUqFFqS3opnGNVI3jHLVRNldCa26bEoS1yFcFQ1CFwJKjnFQu0CAaDZIvyd2cuw_-e7Qx1Vs_hmF6WeeKrWDqmx9ddHaZ4GMM1tVTrR2Gn5pBfVyr_rcW_wXc-V3d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918047927</pqid></control><display><type>article</type><title>Controlling fast spring-legged locomotion with artificial neural networks</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Maier, K. D. ; Glauche, V. ; Beckstein, C. ; Blickhan, R.</creator><creatorcontrib>Maier, K. D. ; Glauche, V. ; Beckstein, C. ; Blickhan, R.</creatorcontrib><description>Controlling the model of an one-legged robot is investigated. The model consists merely of a mass less spring attached to a point mass. The motion of this system is characterised by repeated changes between ground contact and flight phases. It can be kept in motion by active control only. Robots that are suited for fast legged locomotion require different hardware layouts and control approaches in contrast to slow moving ones. The spring mass system is a simple model that describes this principle movement of a spring-legged robot. Multi-Layer-Perceptrons (MLPs), Radial Basis Functions (RBFs) and Self-Organising Motoric Maps (SOMMs) were used to implement neurocontrollers for such a movement system. They all prove to be suitable for control of the movement. This is also shown by an experiment where the environment of the spring-mass system is changed from even to uneven ground. The neurocontroller is performing well with this additional complexity without being trained for it.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s005000000041</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Active control ; Artificial neural networks ; Locomotion ; Mass-spring systems ; Multilayers ; Radial basis function ; Robot control ; Robot dynamics</subject><ispartof>Soft computing (Berlin, Germany), 2000-09, Vol.4 (3), p.157-164</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1107-4b46be0bddfd79df33abc9e294bb3ed604eea3851a0954a63a7ed634acaacb073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918047927?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Maier, K. D.</creatorcontrib><creatorcontrib>Glauche, V.</creatorcontrib><creatorcontrib>Beckstein, C.</creatorcontrib><creatorcontrib>Blickhan, R.</creatorcontrib><title>Controlling fast spring-legged locomotion with artificial neural networks</title><title>Soft computing (Berlin, Germany)</title><description>Controlling the model of an one-legged robot is investigated. The model consists merely of a mass less spring attached to a point mass. The motion of this system is characterised by repeated changes between ground contact and flight phases. It can be kept in motion by active control only. Robots that are suited for fast legged locomotion require different hardware layouts and control approaches in contrast to slow moving ones. The spring mass system is a simple model that describes this principle movement of a spring-legged robot. Multi-Layer-Perceptrons (MLPs), Radial Basis Functions (RBFs) and Self-Organising Motoric Maps (SOMMs) were used to implement neurocontrollers for such a movement system. They all prove to be suitable for control of the movement. This is also shown by an experiment where the environment of the spring-mass system is changed from even to uneven ground. The neurocontroller is performing well with this additional complexity without being trained for it.</description><subject>Active control</subject><subject>Artificial neural networks</subject><subject>Locomotion</subject><subject>Mass-spring systems</subject><subject>Multilayers</subject><subject>Radial basis function</subject><subject>Robot control</subject><subject>Robot dynamics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVUD1PwzAUtBBIlMLIHonZ8Bw7cT2iiI9KlVhgjp4dO6SkcbEdVfx70oaFt9zpdLqnO0JuGdwzAPkQAQqYT7AzsmCCcyqFVOcnnlNZCn5JrmLcAuRMFnxB1pUfUvB93w1t5jCmLO7DxGlv29Y2We-N3_nU-SE7dOkzw5A615kO-2ywYzhBOvjwFa_JhcM-2ps_XJKP56f36pVu3l7W1eOGGsZAUqFFqS3opnGNVI3jHLVRNldCa26bEoS1yFcFQ1CFwJKjnFQu0CAaDZIvyd2cuw_-e7Qx1Vs_hmF6WeeKrWDqmx9ddHaZ4GMM1tVTrR2Gn5pBfVyr_rcW_wXc-V3d</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Maier, K. D.</creator><creator>Glauche, V.</creator><creator>Beckstein, C.</creator><creator>Blickhan, R.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>200009</creationdate><title>Controlling fast spring-legged locomotion with artificial neural networks</title><author>Maier, K. D. ; Glauche, V. ; Beckstein, C. ; Blickhan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1107-4b46be0bddfd79df33abc9e294bb3ed604eea3851a0954a63a7ed634acaacb073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Active control</topic><topic>Artificial neural networks</topic><topic>Locomotion</topic><topic>Mass-spring systems</topic><topic>Multilayers</topic><topic>Radial basis function</topic><topic>Robot control</topic><topic>Robot dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier, K. D.</creatorcontrib><creatorcontrib>Glauche, V.</creatorcontrib><creatorcontrib>Beckstein, C.</creatorcontrib><creatorcontrib>Blickhan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, K. D.</au><au>Glauche, V.</au><au>Beckstein, C.</au><au>Blickhan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling fast spring-legged locomotion with artificial neural networks</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><date>2000-09</date><risdate>2000</risdate><volume>4</volume><issue>3</issue><spage>157</spage><epage>164</epage><pages>157-164</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Controlling the model of an one-legged robot is investigated. The model consists merely of a mass less spring attached to a point mass. The motion of this system is characterised by repeated changes between ground contact and flight phases. It can be kept in motion by active control only. Robots that are suited for fast legged locomotion require different hardware layouts and control approaches in contrast to slow moving ones. The spring mass system is a simple model that describes this principle movement of a spring-legged robot. Multi-Layer-Perceptrons (MLPs), Radial Basis Functions (RBFs) and Self-Organising Motoric Maps (SOMMs) were used to implement neurocontrollers for such a movement system. They all prove to be suitable for control of the movement. This is also shown by an experiment where the environment of the spring-mass system is changed from even to uneven ground. The neurocontroller is performing well with this additional complexity without being trained for it.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s005000000041</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2000-09, Vol.4 (3), p.157-164
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918047927
source SpringerLink Journals; ProQuest Central
subjects Active control
Artificial neural networks
Locomotion
Mass-spring systems
Multilayers
Radial basis function
Robot control
Robot dynamics
title Controlling fast spring-legged locomotion with artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20fast%20spring-legged%20locomotion%20with%20artificial%20neural%20networks&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Maier,%20K.%20D.&rft.date=2000-09&rft.volume=4&rft.issue=3&rft.spage=157&rft.epage=164&rft.pages=157-164&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s005000000041&rft_dat=%3Cproquest_cross%3E2918047927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918047927&rft_id=info:pmid/&rfr_iscdi=true