PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion
Development of LiDAR and depth camera makes it easily to extract the point cloud data of practical items. However, some drawbacks, such as sparsity or loss of details of the point cloud, are evident. Therefore, quite different from the methods as developed so far which usually reconstructed incomple...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2022-09, Vol.38 (9-10), p.3341-3349 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3349 |
---|---|
container_issue | 9-10 |
container_start_page | 3341 |
container_title | The Visual computer |
container_volume | 38 |
creator | Liu, Qi Zhao, Jiacheng Cheng, Changjie Sheng, Bin Ma, Lizhuang |
description | Development of LiDAR and depth camera makes it easily to extract the point cloud data of practical items. However, some drawbacks, such as sparsity or loss of details of the point cloud, are evident. Therefore, quite different from the methods as developed so far which usually reconstructed incomplete point cloud either in terms of GAN-based or autoencoder-based networks, respectively. In this paper, we propose
PointALCR
, which combines GAN-based and autoencoder-based frameworks with contrastive regularization in order to improve the representative and generative abilities for completion of the point cloud. A module named Adversarial Latent GAN be employed for learning a latent space of input/target point cloud representation and extending the generative and discriminative abilities on GAN training procedures. Contrastive regularization ensures that the reconstructed items to be close to the ground truth and far from the incomplete input in feature space. Experimental results demonstrate that
PointALCR
has the capabilities better than previous methods on challenging point cloud completion tasks. |
doi_str_mv | 10.1007/s00371-022-02550-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918046711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918046711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4557cb8d3abcbbcf22384d0a0f17f5d180be2325e4c8836ca9fc0a466f9dea073</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuA6-pL0jatu2HQURhURFcuQpomQ4dOU5NURr_e1AruXDzCI-feBwehcwKXBIBfeQDGSQKUxskySPYHaEZSRhPKSHaIZkB4kVBelMfoxPstxJ2n5Qy9PdmmC4v18vkay_pDOy9dI1vcyqC7gFeLByy7GivbBSd9aD40dnoztJH6kqGxHTbW4X4swaq1w4ju-laPX6foyMjW67Pfd45eb29elnfJ-nF1v1ysE8VyFpI0y7iqiprJSlWVMpSyIq1BgiHcZDUpoNKU0UynqihYrmRpFMg0z01ZawmczdHF1Ns7-z5oH8TWDq6LJwUtYzzNOSGRohOlnPXeaSN61-yk-xQExChRTBJFlCh-JIp9DLEp5CPcbbT7q_4n9Q3YwHZ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918046711</pqid></control><display><type>article</type><title>PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Liu, Qi ; Zhao, Jiacheng ; Cheng, Changjie ; Sheng, Bin ; Ma, Lizhuang</creator><creatorcontrib>Liu, Qi ; Zhao, Jiacheng ; Cheng, Changjie ; Sheng, Bin ; Ma, Lizhuang</creatorcontrib><description>Development of LiDAR and depth camera makes it easily to extract the point cloud data of practical items. However, some drawbacks, such as sparsity or loss of details of the point cloud, are evident. Therefore, quite different from the methods as developed so far which usually reconstructed incomplete point cloud either in terms of GAN-based or autoencoder-based networks, respectively. In this paper, we propose
PointALCR
, which combines GAN-based and autoencoder-based frameworks with contrastive regularization in order to improve the representative and generative abilities for completion of the point cloud. A module named Adversarial Latent GAN be employed for learning a latent space of input/target point cloud representation and extending the generative and discriminative abilities on GAN training procedures. Contrastive regularization ensures that the reconstructed items to be close to the ground truth and far from the incomplete input in feature space. Experimental results demonstrate that
PointALCR
has the capabilities better than previous methods on challenging point cloud completion tasks.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-022-02550-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Cameras ; Computer Graphics ; Computer Science ; Image Processing and Computer Vision ; Image reconstruction ; Original Article ; Probability distribution ; Regularization ; Teaching methods</subject><ispartof>The Visual computer, 2022-09, Vol.38 (9-10), p.3341-3349</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4557cb8d3abcbbcf22384d0a0f17f5d180be2325e4c8836ca9fc0a466f9dea073</citedby><cites>FETCH-LOGICAL-c363t-4557cb8d3abcbbcf22384d0a0f17f5d180be2325e4c8836ca9fc0a466f9dea073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-022-02550-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918046711?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zhao, Jiacheng</creatorcontrib><creatorcontrib>Cheng, Changjie</creatorcontrib><creatorcontrib>Sheng, Bin</creatorcontrib><creatorcontrib>Ma, Lizhuang</creatorcontrib><title>PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Development of LiDAR and depth camera makes it easily to extract the point cloud data of practical items. However, some drawbacks, such as sparsity or loss of details of the point cloud, are evident. Therefore, quite different from the methods as developed so far which usually reconstructed incomplete point cloud either in terms of GAN-based or autoencoder-based networks, respectively. In this paper, we propose
PointALCR
, which combines GAN-based and autoencoder-based frameworks with contrastive regularization in order to improve the representative and generative abilities for completion of the point cloud. A module named Adversarial Latent GAN be employed for learning a latent space of input/target point cloud representation and extending the generative and discriminative abilities on GAN training procedures. Contrastive regularization ensures that the reconstructed items to be close to the ground truth and far from the incomplete input in feature space. Experimental results demonstrate that
PointALCR
has the capabilities better than previous methods on challenging point cloud completion tasks.</description><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Original Article</subject><subject>Probability distribution</subject><subject>Regularization</subject><subject>Teaching methods</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKxDAURYMoOI7-gKuA6-pL0jatu2HQURhURFcuQpomQ4dOU5NURr_e1AruXDzCI-feBwehcwKXBIBfeQDGSQKUxskySPYHaEZSRhPKSHaIZkB4kVBelMfoxPstxJ2n5Qy9PdmmC4v18vkay_pDOy9dI1vcyqC7gFeLByy7GivbBSd9aD40dnoztJH6kqGxHTbW4X4swaq1w4ju-laPX6foyMjW67Pfd45eb29elnfJ-nF1v1ysE8VyFpI0y7iqiprJSlWVMpSyIq1BgiHcZDUpoNKU0UynqihYrmRpFMg0z01ZawmczdHF1Ns7-z5oH8TWDq6LJwUtYzzNOSGRohOlnPXeaSN61-yk-xQExChRTBJFlCh-JIp9DLEp5CPcbbT7q_4n9Q3YwHZ-</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Qi</creator><creator>Zhao, Jiacheng</creator><creator>Cheng, Changjie</creator><creator>Sheng, Bin</creator><creator>Ma, Lizhuang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220901</creationdate><title>PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion</title><author>Liu, Qi ; Zhao, Jiacheng ; Cheng, Changjie ; Sheng, Bin ; Ma, Lizhuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4557cb8d3abcbbcf22384d0a0f17f5d180be2325e4c8836ca9fc0a466f9dea073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Original Article</topic><topic>Probability distribution</topic><topic>Regularization</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zhao, Jiacheng</creatorcontrib><creatorcontrib>Cheng, Changjie</creatorcontrib><creatorcontrib>Sheng, Bin</creatorcontrib><creatorcontrib>Ma, Lizhuang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qi</au><au>Zhao, Jiacheng</au><au>Cheng, Changjie</au><au>Sheng, Bin</au><au>Ma, Lizhuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>38</volume><issue>9-10</issue><spage>3341</spage><epage>3349</epage><pages>3341-3349</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Development of LiDAR and depth camera makes it easily to extract the point cloud data of practical items. However, some drawbacks, such as sparsity or loss of details of the point cloud, are evident. Therefore, quite different from the methods as developed so far which usually reconstructed incomplete point cloud either in terms of GAN-based or autoencoder-based networks, respectively. In this paper, we propose
PointALCR
, which combines GAN-based and autoencoder-based frameworks with contrastive regularization in order to improve the representative and generative abilities for completion of the point cloud. A module named Adversarial Latent GAN be employed for learning a latent space of input/target point cloud representation and extending the generative and discriminative abilities on GAN training procedures. Contrastive regularization ensures that the reconstructed items to be close to the ground truth and far from the incomplete input in feature space. Experimental results demonstrate that
PointALCR
has the capabilities better than previous methods on challenging point cloud completion tasks.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-022-02550-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2022-09, Vol.38 (9-10), p.3341-3349 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918046711 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Cameras Computer Graphics Computer Science Image Processing and Computer Vision Image reconstruction Original Article Probability distribution Regularization Teaching methods |
title | PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PointALCR:%20adversarial%20latent%20GAN%20and%20contrastive%20regularization%20for%20point%20cloud%20completion&rft.jtitle=The%20Visual%20computer&rft.au=Liu,%20Qi&rft.date=2022-09-01&rft.volume=38&rft.issue=9-10&rft.spage=3341&rft.epage=3349&rft.pages=3341-3349&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-022-02550-x&rft_dat=%3Cproquest_cross%3E2918046711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918046711&rft_id=info:pmid/&rfr_iscdi=true |