Adaptive computational chemotaxis based on field in bacterial foraging optimization
Bacterial foraging optimization (BFO) is predominately used to find solutions for real-world problems. One of the major characteristics of BFO is the chemotactic movement of a virtual bacterium that models a trial solution of the problems. It is pointed out that the chemotaxis employed by classical...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2014-04, Vol.18 (4), p.797-807 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 4 |
container_start_page | 797 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 18 |
creator | Xu, Xin Chen, Hui-ling |
description | Bacterial foraging optimization (BFO) is predominately used to find solutions for real-world problems. One of the major characteristics of BFO is the chemotactic movement of a virtual bacterium that models a trial solution of the problems. It is pointed out that the chemotaxis employed by classical BFO usually results in sustained oscillation, especially on rough fitness landscapes, when a bacterium cell is close to the optima. In this paper we propose a novel adaptive computational chemotaxis based on the concept of field, in order to accelerate the convergence speed of the group of bacteria near the tolerance. Firstly, a simple scheme is designed for adapting the chemotactic step size of each field. Then, the scheme chooses the fields which perform better to boost further the convergence speed. Empirical simulations over several numerical benchmarks demonstrate that BFO with adaptive chemotactic operators based on field has better convergence behavior, as compared against other meta-heuristic algorithms. |
doi_str_mv | 10.1007/s00500-013-1089-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918035151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918035151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-27a0ffda84a641c0544729a4ef913933e81fb683067686e59b24afdb0a9a40e83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9GZJm3a47L4BQse1HNI22TNsm1qkhX115vdCp48zTA878vwEHKJcI0A4iYAFAAUkFGEqqb8iMyQM0YFF_XxYc-pKDk7JWchbAByFAWbkedFp8ZoP3TWun7cRRWtG9Q2a99076L6tCFrVNBd5obMWL3tMjukSxu1twkzzqu1HdaZSyW9_T7Ez8mJUdugL37nnLze3b4sH-jq6f5xuVjRlmEZaS4UGNOpiquSYwsF5yKvFdemRlYzpis0TVkxKEVZlbqom5wr0zWgEgS6YnNyNfWO3r3vdIhy43Y-fR9kXmMFrMACE4UT1XoXgtdGjt72yn9JBLl3Jyd3MrmTe3eSp0w-ZUJih7X2f83_h34A9KdxrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918035151</pqid></control><display><type>article</type><title>Adaptive computational chemotaxis based on field in bacterial foraging optimization</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Xu, Xin ; Chen, Hui-ling</creator><creatorcontrib>Xu, Xin ; Chen, Hui-ling</creatorcontrib><description>Bacterial foraging optimization (BFO) is predominately used to find solutions for real-world problems. One of the major characteristics of BFO is the chemotactic movement of a virtual bacterium that models a trial solution of the problems. It is pointed out that the chemotaxis employed by classical BFO usually results in sustained oscillation, especially on rough fitness landscapes, when a bacterium cell is close to the optima. In this paper we propose a novel adaptive computational chemotaxis based on the concept of field, in order to accelerate the convergence speed of the group of bacteria near the tolerance. Firstly, a simple scheme is designed for adapting the chemotactic step size of each field. Then, the scheme chooses the fields which perform better to boost further the convergence speed. Empirical simulations over several numerical benchmarks demonstrate that BFO with adaptive chemotactic operators based on field has better convergence behavior, as compared against other meta-heuristic algorithms.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-013-1089-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Bacteria ; Benchmarks ; Computational Intelligence ; Control ; Convergence ; E coli ; Engineering ; Foraging behavior ; Heuristic methods ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Optimization techniques ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2014-04, Vol.18 (4), p.797-807</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-27a0ffda84a641c0544729a4ef913933e81fb683067686e59b24afdb0a9a40e83</citedby><cites>FETCH-LOGICAL-c316t-27a0ffda84a641c0544729a4ef913933e81fb683067686e59b24afdb0a9a40e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-013-1089-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918035151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Chen, Hui-ling</creatorcontrib><title>Adaptive computational chemotaxis based on field in bacterial foraging optimization</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Bacterial foraging optimization (BFO) is predominately used to find solutions for real-world problems. One of the major characteristics of BFO is the chemotactic movement of a virtual bacterium that models a trial solution of the problems. It is pointed out that the chemotaxis employed by classical BFO usually results in sustained oscillation, especially on rough fitness landscapes, when a bacterium cell is close to the optima. In this paper we propose a novel adaptive computational chemotaxis based on the concept of field, in order to accelerate the convergence speed of the group of bacteria near the tolerance. Firstly, a simple scheme is designed for adapting the chemotactic step size of each field. Then, the scheme chooses the fields which perform better to boost further the convergence speed. Empirical simulations over several numerical benchmarks demonstrate that BFO with adaptive chemotactic operators based on field has better convergence behavior, as compared against other meta-heuristic algorithms.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bacteria</subject><subject>Benchmarks</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Convergence</subject><subject>E coli</subject><subject>Engineering</subject><subject>Foraging behavior</subject><subject>Heuristic methods</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9GZJm3a47L4BQse1HNI22TNsm1qkhX115vdCp48zTA878vwEHKJcI0A4iYAFAAUkFGEqqb8iMyQM0YFF_XxYc-pKDk7JWchbAByFAWbkedFp8ZoP3TWun7cRRWtG9Q2a99076L6tCFrVNBd5obMWL3tMjukSxu1twkzzqu1HdaZSyW9_T7Ez8mJUdugL37nnLze3b4sH-jq6f5xuVjRlmEZaS4UGNOpiquSYwsF5yKvFdemRlYzpis0TVkxKEVZlbqom5wr0zWgEgS6YnNyNfWO3r3vdIhy43Y-fR9kXmMFrMACE4UT1XoXgtdGjt72yn9JBLl3Jyd3MrmTe3eSp0w-ZUJih7X2f83_h34A9KdxrA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Xu, Xin</creator><creator>Chen, Hui-ling</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140401</creationdate><title>Adaptive computational chemotaxis based on field in bacterial foraging optimization</title><author>Xu, Xin ; Chen, Hui-ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-27a0ffda84a641c0544729a4ef913933e81fb683067686e59b24afdb0a9a40e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bacteria</topic><topic>Benchmarks</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Convergence</topic><topic>E coli</topic><topic>Engineering</topic><topic>Foraging behavior</topic><topic>Heuristic methods</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Chen, Hui-ling</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xin</au><au>Chen, Hui-ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive computational chemotaxis based on field in bacterial foraging optimization</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>18</volume><issue>4</issue><spage>797</spage><epage>807</epage><pages>797-807</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Bacterial foraging optimization (BFO) is predominately used to find solutions for real-world problems. One of the major characteristics of BFO is the chemotactic movement of a virtual bacterium that models a trial solution of the problems. It is pointed out that the chemotaxis employed by classical BFO usually results in sustained oscillation, especially on rough fitness landscapes, when a bacterium cell is close to the optima. In this paper we propose a novel adaptive computational chemotaxis based on the concept of field, in order to accelerate the convergence speed of the group of bacteria near the tolerance. Firstly, a simple scheme is designed for adapting the chemotactic step size of each field. Then, the scheme chooses the fields which perform better to boost further the convergence speed. Empirical simulations over several numerical benchmarks demonstrate that BFO with adaptive chemotactic operators based on field has better convergence behavior, as compared against other meta-heuristic algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-013-1089-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2014-04, Vol.18 (4), p.797-807 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918035151 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Bacteria Benchmarks Computational Intelligence Control Convergence E coli Engineering Foraging behavior Heuristic methods Mathematical Logic and Foundations Mechatronics Methodologies and Application Optimization Optimization techniques Robotics |
title | Adaptive computational chemotaxis based on field in bacterial foraging optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20computational%20chemotaxis%20based%20on%20field%20in%20bacterial%20foraging%20optimization&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Xu,%20Xin&rft.date=2014-04-01&rft.volume=18&rft.issue=4&rft.spage=797&rft.epage=807&rft.pages=797-807&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-013-1089-4&rft_dat=%3Cproquest_cross%3E2918035151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918035151&rft_id=info:pmid/&rfr_iscdi=true |