Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems

This paper proposes a novel finite-time optimal control method based on input–output data for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. In this method, the single-hidden layer feed-forward network (SLFN) with extreme learning machine (ELM) is used to construct the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2014-08, Vol.18 (8), p.1645-1653
Hauptverfasser: Song, Ruizhuo, Xiao, Wendong, Wei, Qinglai, Sun, Changyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1653
container_issue 8
container_start_page 1645
container_title Soft computing (Berlin, Germany)
container_volume 18
creator Song, Ruizhuo
Xiao, Wendong
Wei, Qinglai
Sun, Changyin
description This paper proposes a novel finite-time optimal control method based on input–output data for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. In this method, the single-hidden layer feed-forward network (SLFN) with extreme learning machine (ELM) is used to construct the data-based identifier of the unknown system dynamics. Based on the data-based identifier, the finite-time optimal control method is established by ADP algorithm. Two other SLFNs with ELM are used in ADP method to facilitate the implementation of the iterative algorithm, which aim to approximate the performance index function and the optimal control law at each iteration, respectively. A simulation example is provided to demonstrate the effectiveness of the proposed control scheme.
doi_str_mv 10.1007/s00500-013-1170-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918032687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918032687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9a440b206c18f58d7b8a38f85caf5bbad09bb0dac42e2af90872e3853fdbfb6e3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwscTas7SR2jqjiT0JwgbNlJzakTe1iO6rap8clSJw4zR5mZne_orgkcE0A-E0EqAAwEIYJ4YD3R8WMlIxhXvLm-GemmNclOy3OYlwCUMIrNivMixmDGrAzaevDCmsVTYfUZhO8aj9R8sj2rk8Gp35tkN9kUQNqvUvBD8j6gBRqBxUj8haNbuX81iHn3dA7owKKu5jMOp4XJ1YN0Vz86rx4v797Wzzi59eHp8XtM25Z2STcqLIETaFuibCV6LgWigkrqlbZSmvVQaM1dKotqaHKNiA4NUxUzHba6tqweXE19ebzv0YTk1z6Mbi8UtKGCGC0Fjy7yORqg48xGCs3Ib8VdpKAPNCUE02ZacoDTbnPGTplYva6DxP-mv8PfQPua3pz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918032687</pqid></control><display><type>article</type><title>Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Song, Ruizhuo ; Xiao, Wendong ; Wei, Qinglai ; Sun, Changyin</creator><creatorcontrib>Song, Ruizhuo ; Xiao, Wendong ; Wei, Qinglai ; Sun, Changyin</creatorcontrib><description>This paper proposes a novel finite-time optimal control method based on input–output data for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. In this method, the single-hidden layer feed-forward network (SLFN) with extreme learning machine (ELM) is used to construct the data-based identifier of the unknown system dynamics. Based on the data-based identifier, the finite-time optimal control method is established by ADP algorithm. Two other SLFNs with ELM are used in ADP method to facilitate the implementation of the iterative algorithm, which aim to approximate the performance index function and the optimal control law at each iteration, respectively. A simulation example is provided to demonstrate the effectiveness of the proposed control scheme.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-013-1170-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Artificial Intelligence ; Artificial neural networks ; Computational Intelligence ; Control ; Control methods ; Control theory ; Controllers ; Design ; Dynamic programming ; Engineering ; Euclidean space ; Iterative algorithms ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Neural networks ; Neurons ; Nonlinear systems ; Performance indices ; Robotics ; System dynamics ; Time optimal control</subject><ispartof>Soft computing (Berlin, Germany), 2014-08, Vol.18 (8), p.1645-1653</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9a440b206c18f58d7b8a38f85caf5bbad09bb0dac42e2af90872e3853fdbfb6e3</citedby><cites>FETCH-LOGICAL-c349t-9a440b206c18f58d7b8a38f85caf5bbad09bb0dac42e2af90872e3853fdbfb6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-013-1170-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918032687?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Song, Ruizhuo</creatorcontrib><creatorcontrib>Xiao, Wendong</creatorcontrib><creatorcontrib>Wei, Qinglai</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><title>Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper proposes a novel finite-time optimal control method based on input–output data for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. In this method, the single-hidden layer feed-forward network (SLFN) with extreme learning machine (ELM) is used to construct the data-based identifier of the unknown system dynamics. Based on the data-based identifier, the finite-time optimal control method is established by ADP algorithm. Two other SLFNs with ELM are used in ADP method to facilitate the implementation of the iterative algorithm, which aim to approximate the performance index function and the optimal control law at each iteration, respectively. A simulation example is provided to demonstrate the effectiveness of the proposed control scheme.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Control methods</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Design</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Euclidean space</subject><subject>Iterative algorithms</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonlinear systems</subject><subject>Performance indices</subject><subject>Robotics</subject><subject>System dynamics</subject><subject>Time optimal control</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhCMEEqXwANwscTas7SR2jqjiT0JwgbNlJzakTe1iO6rap8clSJw4zR5mZne_orgkcE0A-E0EqAAwEIYJ4YD3R8WMlIxhXvLm-GemmNclOy3OYlwCUMIrNivMixmDGrAzaevDCmsVTYfUZhO8aj9R8sj2rk8Gp35tkN9kUQNqvUvBD8j6gBRqBxUj8haNbuX81iHn3dA7owKKu5jMOp4XJ1YN0Vz86rx4v797Wzzi59eHp8XtM25Z2STcqLIETaFuibCV6LgWigkrqlbZSmvVQaM1dKotqaHKNiA4NUxUzHba6tqweXE19ebzv0YTk1z6Mbi8UtKGCGC0Fjy7yORqg48xGCs3Ib8VdpKAPNCUE02ZacoDTbnPGTplYva6DxP-mv8PfQPua3pz</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Song, Ruizhuo</creator><creator>Xiao, Wendong</creator><creator>Wei, Qinglai</creator><creator>Sun, Changyin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140801</creationdate><title>Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems</title><author>Song, Ruizhuo ; Xiao, Wendong ; Wei, Qinglai ; Sun, Changyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9a440b206c18f58d7b8a38f85caf5bbad09bb0dac42e2af90872e3853fdbfb6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Control methods</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Design</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Euclidean space</topic><topic>Iterative algorithms</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonlinear systems</topic><topic>Performance indices</topic><topic>Robotics</topic><topic>System dynamics</topic><topic>Time optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Ruizhuo</creatorcontrib><creatorcontrib>Xiao, Wendong</creatorcontrib><creatorcontrib>Wei, Qinglai</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ruizhuo</au><au>Xiao, Wendong</au><au>Wei, Qinglai</au><au>Sun, Changyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>18</volume><issue>8</issue><spage>1645</spage><epage>1653</epage><pages>1645-1653</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper proposes a novel finite-time optimal control method based on input–output data for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. In this method, the single-hidden layer feed-forward network (SLFN) with extreme learning machine (ELM) is used to construct the data-based identifier of the unknown system dynamics. Based on the data-based identifier, the finite-time optimal control method is established by ADP algorithm. Two other SLFNs with ELM are used in ADP method to facilitate the implementation of the iterative algorithm, which aim to approximate the performance index function and the optimal control law at each iteration, respectively. A simulation example is provided to demonstrate the effectiveness of the proposed control scheme.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-013-1170-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2014-08, Vol.18 (8), p.1645-1653
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918032687
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Adaptive systems
Algorithms
Artificial Intelligence
Artificial neural networks
Computational Intelligence
Control
Control methods
Control theory
Controllers
Design
Dynamic programming
Engineering
Euclidean space
Iterative algorithms
Machine learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Neural networks
Neurons
Nonlinear systems
Performance indices
Robotics
System dynamics
Time optimal control
title Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-network-based%20approach%20to%20finite-time%20optimal%20control%20for%20a%20class%20of%20unknown%20nonlinear%20systems&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Song,%20Ruizhuo&rft.date=2014-08-01&rft.volume=18&rft.issue=8&rft.spage=1645&rft.epage=1653&rft.pages=1645-1653&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-013-1170-z&rft_dat=%3Cproquest_cross%3E2918032687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918032687&rft_id=info:pmid/&rfr_iscdi=true