High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)

Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-02, Vol.20 (2), p.1550-1561
Hauptverfasser: An, Seongbin, Feng, Jirou, Song, Eunseok, Kong, Kyoungchul, Kim, Jung, Choi, Hyunjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1561
container_issue 2
container_start_page 1550
container_title IEEE transactions on industrial informatics
container_volume 20
creator An, Seongbin
Feng, Jirou
Song, Eunseok
Kong, Kyoungchul
Kim, Jung
Choi, Hyunjin
description Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems.
doi_str_mv 10.1109/TII.2023.3280312
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2918032158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10136753</ieee_id><sourcerecordid>2918032158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d3e4b14b5eb4328f32b86af0705773d34584485b16422e0511b7e45b6bbcecbe3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxYMoWKt3Dx4WvOghdfYrSY9FNC20KNLiMWQ3k49iN3E3OeS_d0t7EAZmGN6b4f2C4J7CjFKYv2xXqxkDxmecJcApuwgmdC5oCCDh0s9S0pAz4NfBjXN7AB4Dn0-CetlUdbjQerC5HskyNwVJ0fWDRfKFuq1M0zetIb76Gsm3bVxPtmgKv0htO3Rk5xpTkU-DwyHvG002qOvctIexrWze1SN56jab9Pk2uCrzH4d35z4Ndu9v29dluP5IV6-LdaiZkH1YcBSKCiVRCZ-k5EwlUV5CDDKOecGFTIRIpKKRYAxBUqpiFFJFSmnUCvk0eDzd7Wz7O_gk2b4drPEvMzanHg2jMvEqOKm0bZ2zWGadbQ65HTMK2ZFn5nlmR57Zmae3PJwsDSL-k1MexZLzP4NkcJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918032158</pqid></control><display><type>article</type><title>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</title><source>IEEE Electronic Library (IEL)</source><creator>An, Seongbin ; Feng, Jirou ; Song, Eunseok ; Kong, Kyoungchul ; Kim, Jung ; Choi, Hyunjin</creator><creatorcontrib>An, Seongbin ; Feng, Jirou ; Song, Eunseok ; Kong, Kyoungchul ; Kim, Jung ; Choi, Hyunjin</creatorcontrib><description>Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3280312</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Electromyography ; Fingers ; Force ; Gesture recognition ; Hand (anatomy) ; human–computer interaction (HCI) ; Joints ; Muscles ; pneumatic mechanomyography (pMMG) ; sensor fusion ; Sensors ; Tendons ; Wrist</subject><ispartof>IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1550-1561</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d3e4b14b5eb4328f32b86af0705773d34584485b16422e0511b7e45b6bbcecbe3</cites><orcidid>0000-0002-2183-2848 ; 0000-0002-0727-9679 ; 0000-0003-2414-8002 ; 0000-0002-7399-6596 ; 0000-0002-1825-6325 ; 0000-0002-5785-0044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10136753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10136753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>An, Seongbin</creatorcontrib><creatorcontrib>Feng, Jirou</creatorcontrib><creatorcontrib>Song, Eunseok</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><creatorcontrib>Kim, Jung</creatorcontrib><creatorcontrib>Choi, Hyunjin</creatorcontrib><title>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems.</description><subject>Electromyography</subject><subject>Fingers</subject><subject>Force</subject><subject>Gesture recognition</subject><subject>Hand (anatomy)</subject><subject>human–computer interaction (HCI)</subject><subject>Joints</subject><subject>Muscles</subject><subject>pneumatic mechanomyography (pMMG)</subject><subject>sensor fusion</subject><subject>Sensors</subject><subject>Tendons</subject><subject>Wrist</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxYMoWKt3Dx4WvOghdfYrSY9FNC20KNLiMWQ3k49iN3E3OeS_d0t7EAZmGN6b4f2C4J7CjFKYv2xXqxkDxmecJcApuwgmdC5oCCDh0s9S0pAz4NfBjXN7AB4Dn0-CetlUdbjQerC5HskyNwVJ0fWDRfKFuq1M0zetIb76Gsm3bVxPtmgKv0htO3Rk5xpTkU-DwyHvG002qOvctIexrWze1SN56jab9Pk2uCrzH4d35z4Ndu9v29dluP5IV6-LdaiZkH1YcBSKCiVRCZ-k5EwlUV5CDDKOecGFTIRIpKKRYAxBUqpiFFJFSmnUCvk0eDzd7Wz7O_gk2b4drPEvMzanHg2jMvEqOKm0bZ2zWGadbQ65HTMK2ZFn5nlmR57Zmae3PJwsDSL-k1MexZLzP4NkcJA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>An, Seongbin</creator><creator>Feng, Jirou</creator><creator>Song, Eunseok</creator><creator>Kong, Kyoungchul</creator><creator>Kim, Jung</creator><creator>Choi, Hyunjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2183-2848</orcidid><orcidid>https://orcid.org/0000-0002-0727-9679</orcidid><orcidid>https://orcid.org/0000-0003-2414-8002</orcidid><orcidid>https://orcid.org/0000-0002-7399-6596</orcidid><orcidid>https://orcid.org/0000-0002-1825-6325</orcidid><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid></search><sort><creationdate>20240201</creationdate><title>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</title><author>An, Seongbin ; Feng, Jirou ; Song, Eunseok ; Kong, Kyoungchul ; Kim, Jung ; Choi, Hyunjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d3e4b14b5eb4328f32b86af0705773d34584485b16422e0511b7e45b6bbcecbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electromyography</topic><topic>Fingers</topic><topic>Force</topic><topic>Gesture recognition</topic><topic>Hand (anatomy)</topic><topic>human–computer interaction (HCI)</topic><topic>Joints</topic><topic>Muscles</topic><topic>pneumatic mechanomyography (pMMG)</topic><topic>sensor fusion</topic><topic>Sensors</topic><topic>Tendons</topic><topic>Wrist</topic><toplevel>online_resources</toplevel><creatorcontrib>An, Seongbin</creatorcontrib><creatorcontrib>Feng, Jirou</creatorcontrib><creatorcontrib>Song, Eunseok</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><creatorcontrib>Kim, Jung</creatorcontrib><creatorcontrib>Choi, Hyunjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>An, Seongbin</au><au>Feng, Jirou</au><au>Song, Eunseok</au><au>Kong, Kyoungchul</au><au>Kim, Jung</au><au>Choi, Hyunjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>1550</spage><epage>1561</epage><pages>1550-1561</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3280312</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2183-2848</orcidid><orcidid>https://orcid.org/0000-0002-0727-9679</orcidid><orcidid>https://orcid.org/0000-0003-2414-8002</orcidid><orcidid>https://orcid.org/0000-0002-7399-6596</orcidid><orcidid>https://orcid.org/0000-0002-1825-6325</orcidid><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1550-1561
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2918032158
source IEEE Electronic Library (IEL)
subjects Electromyography
Fingers
Force
Gesture recognition
Hand (anatomy)
human–computer interaction (HCI)
Joints
Muscles
pneumatic mechanomyography (pMMG)
sensor fusion
Sensors
Tendons
Wrist
title High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Accuracy%20Hand%20Gesture%20Recognition%20on%20the%20Wrist%20Tendon%20Group%20Using%20Pneumatic%20Mechanomyography%20(pMMG)&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=An,%20Seongbin&rft.date=2024-02-01&rft.volume=20&rft.issue=2&rft.spage=1550&rft.epage=1561&rft.pages=1550-1561&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3280312&rft_dat=%3Cproquest_RIE%3E2918032158%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918032158&rft_id=info:pmid/&rft_ieee_id=10136753&rfr_iscdi=true