High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)
Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2024-02, Vol.20 (2), p.1550-1561 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1561 |
---|---|
container_issue | 2 |
container_start_page | 1550 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | An, Seongbin Feng, Jirou Song, Eunseok Kong, Kyoungchul Kim, Jung Choi, Hyunjin |
description | Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems. |
doi_str_mv | 10.1109/TII.2023.3280312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2918032158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10136753</ieee_id><sourcerecordid>2918032158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d3e4b14b5eb4328f32b86af0705773d34584485b16422e0511b7e45b6bbcecbe3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxYMoWKt3Dx4WvOghdfYrSY9FNC20KNLiMWQ3k49iN3E3OeS_d0t7EAZmGN6b4f2C4J7CjFKYv2xXqxkDxmecJcApuwgmdC5oCCDh0s9S0pAz4NfBjXN7AB4Dn0-CetlUdbjQerC5HskyNwVJ0fWDRfKFuq1M0zetIb76Gsm3bVxPtmgKv0htO3Rk5xpTkU-DwyHvG002qOvctIexrWze1SN56jab9Pk2uCrzH4d35z4Ndu9v29dluP5IV6-LdaiZkH1YcBSKCiVRCZ-k5EwlUV5CDDKOecGFTIRIpKKRYAxBUqpiFFJFSmnUCvk0eDzd7Wz7O_gk2b4drPEvMzanHg2jMvEqOKm0bZ2zWGadbQ65HTMK2ZFn5nlmR57Zmae3PJwsDSL-k1MexZLzP4NkcJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918032158</pqid></control><display><type>article</type><title>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</title><source>IEEE Electronic Library (IEL)</source><creator>An, Seongbin ; Feng, Jirou ; Song, Eunseok ; Kong, Kyoungchul ; Kim, Jung ; Choi, Hyunjin</creator><creatorcontrib>An, Seongbin ; Feng, Jirou ; Song, Eunseok ; Kong, Kyoungchul ; Kim, Jung ; Choi, Hyunjin</creatorcontrib><description>Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3280312</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Electromyography ; Fingers ; Force ; Gesture recognition ; Hand (anatomy) ; human–computer interaction (HCI) ; Joints ; Muscles ; pneumatic mechanomyography (pMMG) ; sensor fusion ; Sensors ; Tendons ; Wrist</subject><ispartof>IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1550-1561</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d3e4b14b5eb4328f32b86af0705773d34584485b16422e0511b7e45b6bbcecbe3</cites><orcidid>0000-0002-2183-2848 ; 0000-0002-0727-9679 ; 0000-0003-2414-8002 ; 0000-0002-7399-6596 ; 0000-0002-1825-6325 ; 0000-0002-5785-0044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10136753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10136753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>An, Seongbin</creatorcontrib><creatorcontrib>Feng, Jirou</creatorcontrib><creatorcontrib>Song, Eunseok</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><creatorcontrib>Kim, Jung</creatorcontrib><creatorcontrib>Choi, Hyunjin</creatorcontrib><title>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems.</description><subject>Electromyography</subject><subject>Fingers</subject><subject>Force</subject><subject>Gesture recognition</subject><subject>Hand (anatomy)</subject><subject>human–computer interaction (HCI)</subject><subject>Joints</subject><subject>Muscles</subject><subject>pneumatic mechanomyography (pMMG)</subject><subject>sensor fusion</subject><subject>Sensors</subject><subject>Tendons</subject><subject>Wrist</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxYMoWKt3Dx4WvOghdfYrSY9FNC20KNLiMWQ3k49iN3E3OeS_d0t7EAZmGN6b4f2C4J7CjFKYv2xXqxkDxmecJcApuwgmdC5oCCDh0s9S0pAz4NfBjXN7AB4Dn0-CetlUdbjQerC5HskyNwVJ0fWDRfKFuq1M0zetIb76Gsm3bVxPtmgKv0htO3Rk5xpTkU-DwyHvG002qOvctIexrWze1SN56jab9Pk2uCrzH4d35z4Ndu9v29dluP5IV6-LdaiZkH1YcBSKCiVRCZ-k5EwlUV5CDDKOecGFTIRIpKKRYAxBUqpiFFJFSmnUCvk0eDzd7Wz7O_gk2b4drPEvMzanHg2jMvEqOKm0bZ2zWGadbQ65HTMK2ZFn5nlmR57Zmae3PJwsDSL-k1MexZLzP4NkcJA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>An, Seongbin</creator><creator>Feng, Jirou</creator><creator>Song, Eunseok</creator><creator>Kong, Kyoungchul</creator><creator>Kim, Jung</creator><creator>Choi, Hyunjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2183-2848</orcidid><orcidid>https://orcid.org/0000-0002-0727-9679</orcidid><orcidid>https://orcid.org/0000-0003-2414-8002</orcidid><orcidid>https://orcid.org/0000-0002-7399-6596</orcidid><orcidid>https://orcid.org/0000-0002-1825-6325</orcidid><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid></search><sort><creationdate>20240201</creationdate><title>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</title><author>An, Seongbin ; Feng, Jirou ; Song, Eunseok ; Kong, Kyoungchul ; Kim, Jung ; Choi, Hyunjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d3e4b14b5eb4328f32b86af0705773d34584485b16422e0511b7e45b6bbcecbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electromyography</topic><topic>Fingers</topic><topic>Force</topic><topic>Gesture recognition</topic><topic>Hand (anatomy)</topic><topic>human–computer interaction (HCI)</topic><topic>Joints</topic><topic>Muscles</topic><topic>pneumatic mechanomyography (pMMG)</topic><topic>sensor fusion</topic><topic>Sensors</topic><topic>Tendons</topic><topic>Wrist</topic><toplevel>online_resources</toplevel><creatorcontrib>An, Seongbin</creatorcontrib><creatorcontrib>Feng, Jirou</creatorcontrib><creatorcontrib>Song, Eunseok</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><creatorcontrib>Kim, Jung</creatorcontrib><creatorcontrib>Choi, Hyunjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>An, Seongbin</au><au>Feng, Jirou</au><au>Song, Eunseok</au><au>Kong, Kyoungchul</au><au>Kim, Jung</au><au>Choi, Hyunjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG)</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>1550</spage><epage>1561</epage><pages>1550-1561</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Hand gesture recognition has received considerable attention as an intuitive interaction method in recent years. This research introduces a new wearable hand gesture recognition system that employs pneumatic mechanomyography (pMMG) to directly monitor the wrist tendon group, which transmits muscle force to the fingers. The experimental findings demonstrate that the proposed method provides raw observations proportional to the finger flexion force, with high R -squared values exceeding 0.94. The performance of the proposed system was evaluated by conducting a hand gesture experiment consisting of 28 hand gestures. The proposed method achieved an average accuracy of 98.12%, surpassing the surface electromyography (sEMG) system's accuracy of 93.89%. Furthermore, the fusion of pMMG and sEMG sensors yielded an accuracy of 99.18%. The results suggest that the proposed approach exhibits the potential to enhance the accuracy and efficiency of hand gesture recognition systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3280312</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2183-2848</orcidid><orcidid>https://orcid.org/0000-0002-0727-9679</orcidid><orcidid>https://orcid.org/0000-0003-2414-8002</orcidid><orcidid>https://orcid.org/0000-0002-7399-6596</orcidid><orcidid>https://orcid.org/0000-0002-1825-6325</orcidid><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1550-1561 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2918032158 |
source | IEEE Electronic Library (IEL) |
subjects | Electromyography Fingers Force Gesture recognition Hand (anatomy) human–computer interaction (HCI) Joints Muscles pneumatic mechanomyography (pMMG) sensor fusion Sensors Tendons Wrist |
title | High-Accuracy Hand Gesture Recognition on the Wrist Tendon Group Using Pneumatic Mechanomyography (pMMG) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Accuracy%20Hand%20Gesture%20Recognition%20on%20the%20Wrist%20Tendon%20Group%20Using%20Pneumatic%20Mechanomyography%20(pMMG)&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=An,%20Seongbin&rft.date=2024-02-01&rft.volume=20&rft.issue=2&rft.spage=1550&rft.epage=1561&rft.pages=1550-1561&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3280312&rft_dat=%3Cproquest_RIE%3E2918032158%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918032158&rft_id=info:pmid/&rft_ieee_id=10136753&rfr_iscdi=true |