Multi-semantic preserving neural style transfer based on Y channel information of image

Neural style transfer, as a new auxiliary means for digital art design, can reduce the threshold of technical design and improve the efficiency of creation. The existing methods have achieved good results in terms of speed and style quantity, but most of them change or erase the semantic information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2023-02, Vol.39 (2), p.609-623
Hauptverfasser: Ye, Wujian, Zhu, Xueke, Liu, Yijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 2
container_start_page 609
container_title The Visual computer
container_volume 39
creator Ye, Wujian
Zhu, Xueke
Liu, Yijun
description Neural style transfer, as a new auxiliary means for digital art design, can reduce the threshold of technical design and improve the efficiency of creation. The existing methods have achieved good results in terms of speed and style quantity, but most of them change or erase the semantic information of the original content image to varying degrees during the process of stylization, resulting in the loss of most of the original content features and emotion; although some methods can maintain specific original semantic mentioned above, they need to introduce a corresponding semantic description network, leading to a relatively complex stylization framework. In this paper, we propose a multi-semantic preserving fast style transfer approach based on Y channel information. By constructing a multi-semantic loss consisting of a feature loss and a structure loss derived from a pre-trained VGG network with the input of Y channel image and content image, the training of stylization model is constrained to realize the multi-semantic preservation. The experiments indicate that our stylization model is relatively light and simple, and the generated artworks can effectively maintain the original multi-semantic information including salience, depth and edge semantics, emphasize the original content features and emotional expression and show better visual effects.
doi_str_mv 10.1007/s00371-021-02361-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918030543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918030543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-399190ef00427b5de3ae3df8832851d082deb77fe796ad4c2dcb3108fc073b6b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0jbJURb_wYoXRTyFtJ2sXbrpmrTCfnujK3jzMAwzvPdm-BFyzuGSA6irBCAVZyC-S1acVQdkxgspmJC8PCQz4EozobQ5JicprSHPqjAz8vo49WPHEm5cGLuGbiMmjJ9dWNGAU3Q9TeOuRzpGF5LHSGuXsKVDoG-0eXchYE-74Ie4cWOXt4On3cat8JQcedcnPPvtc_Jye_O8uGfLp7uHxfWSNaIwI5PGcAPoAQqh6rJF6VC2XmspdMlb0KLFWimPylSuLRrRNrXkoH0DStZVLefkYp-7jcPHhGm062GKIZ-0wnANEspCZpXYq5o4pBTR223Mb8ad5WC_Ado9QJsB2h-AtsomuTelLA4rjH_R_7i-ADoZc-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030543</pqid></control><display><type>article</type><title>Multi-semantic preserving neural style transfer based on Y channel information of image</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Ye, Wujian ; Zhu, Xueke ; Liu, Yijun</creator><creatorcontrib>Ye, Wujian ; Zhu, Xueke ; Liu, Yijun</creatorcontrib><description>Neural style transfer, as a new auxiliary means for digital art design, can reduce the threshold of technical design and improve the efficiency of creation. The existing methods have achieved good results in terms of speed and style quantity, but most of them change or erase the semantic information of the original content image to varying degrees during the process of stylization, resulting in the loss of most of the original content features and emotion; although some methods can maintain specific original semantic mentioned above, they need to introduce a corresponding semantic description network, leading to a relatively complex stylization framework. In this paper, we propose a multi-semantic preserving fast style transfer approach based on Y channel information. By constructing a multi-semantic loss consisting of a feature loss and a structure loss derived from a pre-trained VGG network with the input of Y channel image and content image, the training of stylization model is constrained to realize the multi-semantic preservation. The experiments indicate that our stylization model is relatively light and simple, and the generated artworks can effectively maintain the original multi-semantic information including salience, depth and edge semantics, emphasize the original content features and emotional expression and show better visual effects.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-021-02361-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Art works ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Digital imaging ; Emotions ; Image Processing and Computer Vision ; Methods ; Original Article ; Semantics ; Visual effects ; Wavelet transforms</subject><ispartof>The Visual computer, 2023-02, Vol.39 (2), p.609-623</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-399190ef00427b5de3ae3df8832851d082deb77fe796ad4c2dcb3108fc073b6b3</citedby><cites>FETCH-LOGICAL-c249t-399190ef00427b5de3ae3df8832851d082deb77fe796ad4c2dcb3108fc073b6b3</cites><orcidid>0000-0002-4044-4680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-021-02361-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918030543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Ye, Wujian</creatorcontrib><creatorcontrib>Zhu, Xueke</creatorcontrib><creatorcontrib>Liu, Yijun</creatorcontrib><title>Multi-semantic preserving neural style transfer based on Y channel information of image</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Neural style transfer, as a new auxiliary means for digital art design, can reduce the threshold of technical design and improve the efficiency of creation. The existing methods have achieved good results in terms of speed and style quantity, but most of them change or erase the semantic information of the original content image to varying degrees during the process of stylization, resulting in the loss of most of the original content features and emotion; although some methods can maintain specific original semantic mentioned above, they need to introduce a corresponding semantic description network, leading to a relatively complex stylization framework. In this paper, we propose a multi-semantic preserving fast style transfer approach based on Y channel information. By constructing a multi-semantic loss consisting of a feature loss and a structure loss derived from a pre-trained VGG network with the input of Y channel image and content image, the training of stylization model is constrained to realize the multi-semantic preservation. The experiments indicate that our stylization model is relatively light and simple, and the generated artworks can effectively maintain the original multi-semantic information including salience, depth and edge semantics, emphasize the original content features and emotional expression and show better visual effects.</description><subject>Art works</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Digital imaging</subject><subject>Emotions</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Original Article</subject><subject>Semantics</subject><subject>Visual effects</subject><subject>Wavelet transforms</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0jbJURb_wYoXRTyFtJ2sXbrpmrTCfnujK3jzMAwzvPdm-BFyzuGSA6irBCAVZyC-S1acVQdkxgspmJC8PCQz4EozobQ5JicprSHPqjAz8vo49WPHEm5cGLuGbiMmjJ9dWNGAU3Q9TeOuRzpGF5LHSGuXsKVDoG-0eXchYE-74Ie4cWOXt4On3cat8JQcedcnPPvtc_Jye_O8uGfLp7uHxfWSNaIwI5PGcAPoAQqh6rJF6VC2XmspdMlb0KLFWimPylSuLRrRNrXkoH0DStZVLefkYp-7jcPHhGm062GKIZ-0wnANEspCZpXYq5o4pBTR223Mb8ad5WC_Ado9QJsB2h-AtsomuTelLA4rjH_R_7i-ADoZc-A</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ye, Wujian</creator><creator>Zhu, Xueke</creator><creator>Liu, Yijun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4044-4680</orcidid></search><sort><creationdate>20230201</creationdate><title>Multi-semantic preserving neural style transfer based on Y channel information of image</title><author>Ye, Wujian ; Zhu, Xueke ; Liu, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-399190ef00427b5de3ae3df8832851d082deb77fe796ad4c2dcb3108fc073b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Art works</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Digital imaging</topic><topic>Emotions</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Original Article</topic><topic>Semantics</topic><topic>Visual effects</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Wujian</creatorcontrib><creatorcontrib>Zhu, Xueke</creatorcontrib><creatorcontrib>Liu, Yijun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Wujian</au><au>Zhu, Xueke</au><au>Liu, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-semantic preserving neural style transfer based on Y channel information of image</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>39</volume><issue>2</issue><spage>609</spage><epage>623</epage><pages>609-623</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Neural style transfer, as a new auxiliary means for digital art design, can reduce the threshold of technical design and improve the efficiency of creation. The existing methods have achieved good results in terms of speed and style quantity, but most of them change or erase the semantic information of the original content image to varying degrees during the process of stylization, resulting in the loss of most of the original content features and emotion; although some methods can maintain specific original semantic mentioned above, they need to introduce a corresponding semantic description network, leading to a relatively complex stylization framework. In this paper, we propose a multi-semantic preserving fast style transfer approach based on Y channel information. By constructing a multi-semantic loss consisting of a feature loss and a structure loss derived from a pre-trained VGG network with the input of Y channel image and content image, the training of stylization model is constrained to realize the multi-semantic preservation. The experiments indicate that our stylization model is relatively light and simple, and the generated artworks can effectively maintain the original multi-semantic information including salience, depth and edge semantics, emphasize the original content features and emotional expression and show better visual effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-021-02361-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4044-4680</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2023-02, Vol.39 (2), p.609-623
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918030543
source SpringerLink Journals; ProQuest Central
subjects Art works
Artificial Intelligence
Computer Graphics
Computer Science
Digital imaging
Emotions
Image Processing and Computer Vision
Methods
Original Article
Semantics
Visual effects
Wavelet transforms
title Multi-semantic preserving neural style transfer based on Y channel information of image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-semantic%20preserving%20neural%20style%20transfer%20based%20on%20Y%20channel%20information%20of%20image&rft.jtitle=The%20Visual%20computer&rft.au=Ye,%20Wujian&rft.date=2023-02-01&rft.volume=39&rft.issue=2&rft.spage=609&rft.epage=623&rft.pages=609-623&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-021-02361-6&rft_dat=%3Cproquest_cross%3E2918030543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918030543&rft_id=info:pmid/&rfr_iscdi=true