A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT
Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidim...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-02, Vol.11 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Ni, Yun Li, Jinguo Chang, Wenming Xiao, Jifei |
description | Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2. |
doi_str_mv | 10.1109/JIOT.2023.3306003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2918030314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225518</ieee_id><sourcerecordid>2918030314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGEwnyA0w8bOK5uLvTbnePiF-YGlDx4mWzbQdcAi3utiT8e0vwwGkmk-edvHkIueZsyDnTd6-T6XwomIAhAJOMwRnpCRBpFEspzk_2SzIIYcUY62IJ17JHvkc0e5hF9zZgSWfe7Wyxj2YeA_qdq5Y0q6ula9rSVXZNbVXSt3bduNJtsAquPhw_bLVE-t6i39PP4gc3SF1Fu0ZX5GJh1wEH_7NPvp4e5-OXKJs-T8ajLCqEjpsohzTBHITUyorEqlIpVWqbAk-sVRp4LlnBS1XoWBYsjwVDSJUEUGmueVJAn9we_259_dtiaMyqbn1XLRihuWLAgMcdxY9U4esQPC7M1ruN9XvDmTlYNAeL5mDR_FvsMjfHjEPEE16IJOEK_gCsTWvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030314</pqid></control><display><type>article</type><title>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</title><source>IEEE Electronic Library (IEL)</source><creator>Ni, Yun ; Li, Jinguo ; Chang, Wenming ; Xiao, Jifei</creator><creatorcontrib>Ni, Yun ; Li, Jinguo ; Chang, Wenming ; Xiao, Jifei</creatorcontrib><description>Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3306003</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binary trees ; Data privacy ; Error reduction ; Internet of Things ; Local differential privacy ; Lower bounds ; Multidimensional data ; Privacy ; Privacy preserving ; Queries ; Randomized response ; Range query ; Sensors ; Servers ; Temperature sensors ; Trusted third parties ; Upper bounds</subject><ispartof>IEEE internet of things journal, 2024-02, Vol.11 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</citedby><cites>FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</cites><orcidid>0000-0002-7980-0312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10225518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ni, Yun</creatorcontrib><creatorcontrib>Li, Jinguo</creatorcontrib><creatorcontrib>Chang, Wenming</creatorcontrib><creatorcontrib>Xiao, Jifei</creatorcontrib><title>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.</description><subject>Binary trees</subject><subject>Data privacy</subject><subject>Error reduction</subject><subject>Internet of Things</subject><subject>Local differential privacy</subject><subject>Lower bounds</subject><subject>Multidimensional data</subject><subject>Privacy</subject><subject>Privacy preserving</subject><subject>Queries</subject><subject>Randomized response</subject><subject>Range query</subject><subject>Sensors</subject><subject>Servers</subject><subject>Temperature sensors</subject><subject>Trusted third parties</subject><subject>Upper bounds</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGEwnyA0w8bOK5uLvTbnePiF-YGlDx4mWzbQdcAi3utiT8e0vwwGkmk-edvHkIueZsyDnTd6-T6XwomIAhAJOMwRnpCRBpFEspzk_2SzIIYcUY62IJ17JHvkc0e5hF9zZgSWfe7Wyxj2YeA_qdq5Y0q6ula9rSVXZNbVXSt3bduNJtsAquPhw_bLVE-t6i39PP4gc3SF1Fu0ZX5GJh1wEH_7NPvp4e5-OXKJs-T8ajLCqEjpsohzTBHITUyorEqlIpVWqbAk-sVRp4LlnBS1XoWBYsjwVDSJUEUGmueVJAn9we_259_dtiaMyqbn1XLRihuWLAgMcdxY9U4esQPC7M1ruN9XvDmTlYNAeL5mDR_FvsMjfHjEPEE16IJOEK_gCsTWvO</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ni, Yun</creator><creator>Li, Jinguo</creator><creator>Chang, Wenming</creator><creator>Xiao, Jifei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7980-0312</orcidid></search><sort><creationdate>20240201</creationdate><title>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</title><author>Ni, Yun ; Li, Jinguo ; Chang, Wenming ; Xiao, Jifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binary trees</topic><topic>Data privacy</topic><topic>Error reduction</topic><topic>Internet of Things</topic><topic>Local differential privacy</topic><topic>Lower bounds</topic><topic>Multidimensional data</topic><topic>Privacy</topic><topic>Privacy preserving</topic><topic>Queries</topic><topic>Randomized response</topic><topic>Range query</topic><topic>Sensors</topic><topic>Servers</topic><topic>Temperature sensors</topic><topic>Trusted third parties</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yun</creatorcontrib><creatorcontrib>Li, Jinguo</creatorcontrib><creatorcontrib>Chang, Wenming</creatorcontrib><creatorcontrib>Xiao, Jifei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni, Yun</au><au>Li, Jinguo</au><au>Chang, Wenming</au><au>Xiao, Jifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3306003</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7980-0312</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-02, Vol.11 (3), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2918030314 |
source | IEEE Electronic Library (IEL) |
subjects | Binary trees Data privacy Error reduction Internet of Things Local differential privacy Lower bounds Multidimensional data Privacy Privacy preserving Queries Randomized response Range query Sensors Servers Temperature sensors Trusted third parties Upper bounds |
title | A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20LDP-Based%20Privacy-Preserving%20Longitudinal%20and%20Multidimensional%20Range%20Query%20Scheme%20in%20IOT&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ni,%20Yun&rft.date=2024-02-01&rft.volume=11&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3306003&rft_dat=%3Cproquest_RIE%3E2918030314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918030314&rft_id=info:pmid/&rft_ieee_id=10225518&rfr_iscdi=true |