A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT

Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-02, Vol.11 (3), p.1-1
Hauptverfasser: Ni, Yun, Li, Jinguo, Chang, Wenming, Xiao, Jifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE internet of things journal
container_volume 11
creator Ni, Yun
Li, Jinguo
Chang, Wenming
Xiao, Jifei
description Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.
doi_str_mv 10.1109/JIOT.2023.3306003
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2918030314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225518</ieee_id><sourcerecordid>2918030314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGEwnyA0w8bOK5uLvTbnePiF-YGlDx4mWzbQdcAi3utiT8e0vwwGkmk-edvHkIueZsyDnTd6-T6XwomIAhAJOMwRnpCRBpFEspzk_2SzIIYcUY62IJ17JHvkc0e5hF9zZgSWfe7Wyxj2YeA_qdq5Y0q6ula9rSVXZNbVXSt3bduNJtsAquPhw_bLVE-t6i39PP4gc3SF1Fu0ZX5GJh1wEH_7NPvp4e5-OXKJs-T8ajLCqEjpsohzTBHITUyorEqlIpVWqbAk-sVRp4LlnBS1XoWBYsjwVDSJUEUGmueVJAn9we_259_dtiaMyqbn1XLRihuWLAgMcdxY9U4esQPC7M1ruN9XvDmTlYNAeL5mDR_FvsMjfHjEPEE16IJOEK_gCsTWvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030314</pqid></control><display><type>article</type><title>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</title><source>IEEE Electronic Library (IEL)</source><creator>Ni, Yun ; Li, Jinguo ; Chang, Wenming ; Xiao, Jifei</creator><creatorcontrib>Ni, Yun ; Li, Jinguo ; Chang, Wenming ; Xiao, Jifei</creatorcontrib><description>Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3306003</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binary trees ; Data privacy ; Error reduction ; Internet of Things ; Local differential privacy ; Lower bounds ; Multidimensional data ; Privacy ; Privacy preserving ; Queries ; Randomized response ; Range query ; Sensors ; Servers ; Temperature sensors ; Trusted third parties ; Upper bounds</subject><ispartof>IEEE internet of things journal, 2024-02, Vol.11 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</citedby><cites>FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</cites><orcidid>0000-0002-7980-0312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10225518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ni, Yun</creatorcontrib><creatorcontrib>Li, Jinguo</creatorcontrib><creatorcontrib>Chang, Wenming</creatorcontrib><creatorcontrib>Xiao, Jifei</creatorcontrib><title>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.</description><subject>Binary trees</subject><subject>Data privacy</subject><subject>Error reduction</subject><subject>Internet of Things</subject><subject>Local differential privacy</subject><subject>Lower bounds</subject><subject>Multidimensional data</subject><subject>Privacy</subject><subject>Privacy preserving</subject><subject>Queries</subject><subject>Randomized response</subject><subject>Range query</subject><subject>Sensors</subject><subject>Servers</subject><subject>Temperature sensors</subject><subject>Trusted third parties</subject><subject>Upper bounds</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGEwnyA0w8bOK5uLvTbnePiF-YGlDx4mWzbQdcAi3utiT8e0vwwGkmk-edvHkIueZsyDnTd6-T6XwomIAhAJOMwRnpCRBpFEspzk_2SzIIYcUY62IJ17JHvkc0e5hF9zZgSWfe7Wyxj2YeA_qdq5Y0q6ula9rSVXZNbVXSt3bduNJtsAquPhw_bLVE-t6i39PP4gc3SF1Fu0ZX5GJh1wEH_7NPvp4e5-OXKJs-T8ajLCqEjpsohzTBHITUyorEqlIpVWqbAk-sVRp4LlnBS1XoWBYsjwVDSJUEUGmueVJAn9we_259_dtiaMyqbn1XLRihuWLAgMcdxY9U4esQPC7M1ruN9XvDmTlYNAeL5mDR_FvsMjfHjEPEE16IJOEK_gCsTWvO</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ni, Yun</creator><creator>Li, Jinguo</creator><creator>Chang, Wenming</creator><creator>Xiao, Jifei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7980-0312</orcidid></search><sort><creationdate>20240201</creationdate><title>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</title><author>Ni, Yun ; Li, Jinguo ; Chang, Wenming ; Xiao, Jifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binary trees</topic><topic>Data privacy</topic><topic>Error reduction</topic><topic>Internet of Things</topic><topic>Local differential privacy</topic><topic>Lower bounds</topic><topic>Multidimensional data</topic><topic>Privacy</topic><topic>Privacy preserving</topic><topic>Queries</topic><topic>Randomized response</topic><topic>Range query</topic><topic>Sensors</topic><topic>Servers</topic><topic>Temperature sensors</topic><topic>Trusted third parties</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yun</creatorcontrib><creatorcontrib>Li, Jinguo</creatorcontrib><creatorcontrib>Chang, Wenming</creatorcontrib><creatorcontrib>Xiao, Jifei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni, Yun</au><au>Li, Jinguo</au><au>Chang, Wenming</au><au>Xiao, Jifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3306003</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7980-0312</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-02, Vol.11 (3), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2918030314
source IEEE Electronic Library (IEL)
subjects Binary trees
Data privacy
Error reduction
Internet of Things
Local differential privacy
Lower bounds
Multidimensional data
Privacy
Privacy preserving
Queries
Randomized response
Range query
Sensors
Servers
Temperature sensors
Trusted third parties
Upper bounds
title A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20LDP-Based%20Privacy-Preserving%20Longitudinal%20and%20Multidimensional%20Range%20Query%20Scheme%20in%20IOT&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ni,%20Yun&rft.date=2024-02-01&rft.volume=11&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3306003&rft_dat=%3Cproquest_RIE%3E2918030314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918030314&rft_id=info:pmid/&rft_ieee_id=10225518&rfr_iscdi=true